Advance Search
XU Kenan, WANG Baishun, LIU Qinghong. Study on gas drainage radius and distance between boreholesbased on dynamic fluid-solid coupling model[J]. COAL SCIENCE AND TECHNOLOGY, 2018, (5).
Citation: XU Kenan, WANG Baishun, LIU Qinghong. Study on gas drainage radius and distance between boreholesbased on dynamic fluid-solid coupling model[J]. COAL SCIENCE AND TECHNOLOGY, 2018, (5).

Study on gas drainage radius and distance between boreholesbased on dynamic fluid-solid coupling model

More Information
  • Available Online: April 02, 2023
  • Published Date: May 24, 2018
  • In order to set up the gas drainage radius and the layout distance between boreholes, based on the overburden strata pressure, geostress and seam gas pressure distribution condition and to consider the coal dilatancy affected to the coal pore ratio and the permeability dynamic variation equation, a seepage dynamic fluid-solid coupling model of the borehole gas drainage was established. Based on the seepage fluid-solid coupling model obtained, the model was embedded in the Comsol Multiphysics for the simulation calculation and No. 11528 coal mining face was applied to the site approval on the single borehole and multi borehole gas drainage experiments. The study results showed that the gas pressure variation in the gas drainage borehole along the straight line distribution mainly would be reduced along the straight line and along the delta top layout, the borehole gas pressure reduction range would be a full semicircle. The single borehole gas drainage radius was 2.05 m and a layout distance of the single borehole gas drainage and the multi boreholes layout along the straight line was 1.8 times longer than the single borehole gas drainage radius. The layout distance of the multi boreholes at the delta top points would be 1.6 times longer than the single borehole gas drainage radius.
  • Related Articles

    [1]PAN Jun. Study on mine water inrush source discrimination method based on Piper- hierarchical clustering - gray rational analysis[J]. COAL SCIENCE AND TECHNOLOGY, 2024, 52(S1): 221-227. DOI: 10.12438/cst.2023-0918
    [2]KANG Xiaobing, LI Xiaoxue, RAO Lifang, ZHANG Wenfa, LUO Xiangkui, WANG Kefeng. Source identification and pattern study of closed coal mines water inflow in Songzao Mining Area, Chongqing City[J]. COAL SCIENCE AND TECHNOLOGY, 2023, 51(10): 220-230. DOI: 10.13199/j.cnki.cst.2022-1640
    [3]DONG Donglin, ZHANG Longqiang, ZHANG Enyu, FU Peiqi, CHEN Yuqi, LIN Xindong, LI Huizhe. A rapid identification model of mine water inrush based on PSO-XGBoost[J]. COAL SCIENCE AND TECHNOLOGY, 2023, 51(7): 72-82. DOI: 10.13199/j.cnki.cst.2023-0446
    [4]YU Xiaoge, LIU Yifei, ZHAI Peihe. Identification of mine water inrush source based on PCA-AWOA-ELM model[J]. COAL SCIENCE AND TECHNOLOGY, 2023, 51(3): 182-189. DOI: 10.13199/j.cnki.cst.2021-0541
    [5]ZHU Saijun, JIANG Chunlu, BI Bo, XIE Hao, AN Shikai. Identification of mine water inrush source based on combinationweight-theory of improved grey relational degree[J]. COAL SCIENCE AND TECHNOLOGY, 2022, 50(4): 165-172.
    [6]SU Wei, JIANG Chunlu, ZHA Junzhen, ZHENG Liugen, XIE Huadong, HUANG Wendi, CHEN Yuanping. Identification of mine water inrush source based on objective combinedweights-improved set pair analysis model[J]. COAL SCIENCE AND TECHNOLOGY, 2022, 50(4): 156-164.
    [7]YANG Zhaobiao, WU Congcong, ZHU Jieping, LI Yangyang, QIN Zonghao. Research progress on produced water geochemical from CBM wells in China[J]. COAL SCIENCE AND TECHNOLOGY, 2019, (1).
    [8]SHAO Liangshan, LI Xiangchen. Indentification of mine water inrush source based on MIV-PSO-SVM[J]. COAL SCIENCE AND TECHNOLOGY, 2018, (8).
    [9]QU Xingyue, SHI Longqing. Discrimination on mine water inrush source based on Matlab factor analysis and Distance Distinguished Model[J]. COAL SCIENCE AND TECHNOLOGY, 2018, (8).
    [10]Study on Prevention Method and Analysis of Water Inrush Sources in Construction Mine[J]. COAL SCIENCE AND TECHNOLOGY, 2013, (8).
  • Cited by

    Periodical cited type(19)

    1. 李迎雪,郑禄林,杨爱莲,曾艳,石鑫,冉浪. 基于QPSO-BP神经网络的矿井突水水源判识模型研究. 贵州大学学报(自然科学版). 2025(01): 114-124 .
    2. 鹿友磊,谭奕明. 多方法耦合的充水水源识别技术在王家岭矿的应用研究. 煤炭与化工. 2025(03): 52-56+84 .
    3. 温卓越,杜兆文,李帅乾. 基于不同浓度氯盐作用下充填膏体时效性特征研究. 煤炭科学技术. 2025(05): 114-126 . 本站查看
    4. 罗卫东,杨乘,胡金春,袁荣方,赵喜宇. 煤岩瓦斯动力灾害风险智能判识与融合预测. 能源与环保. 2024(05): 71-77 .
    5. 肖观红,鲁海峰. 基于PCA-GA-RF的矿井突水水源快速识别模型. 煤矿安全. 2024(06): 184-191 .
    6. 潘军. 基于Piper-层次聚类-灰色关联度的突水水源识别. 煤炭科学技术. 2024(S1): 221-227 . 本站查看
    7. 石守桥,吴复柱,边凯,王铁记,靳子栋,段江飞. 基于水化学及氢氧同位素的采空区积水水源识别:以巴彦高勒煤矿为例. 科学技术与工程. 2024(24): 10220-10226 .
    8. 杜兆文,温卓越,李帅乾,王飞宇. 氯盐作用下膏体充填体力学特性及劣化机制研究. 岩石力学与工程学报. 2024(12): 2924-2939 .
    9. 郑洁铭,李媛,方惠明,魏中林,刘荣灿. 基于水化学-微生物特征的矿井涌水水源识别. 煤炭工程. 2024(S1): 138-144 .
    10. 华星月,邵良杉. 基于KPCA-GWO-SVM的矿井突水水源识别. 煤矿安全. 2023(02): 195-200 .
    11. 王凯,李康楠,杜锋,张翔,王衍海,周家旭. 基于CNN的煤岩瓦斯复合动力灾害预测. 矿业科学学报. 2023(05): 613-622 .
    12. 黄敏,毛岸,路世昌,王彦彬,邵良杉. 矿井突水水源识别的主成分分析-混沌麻雀搜索-RF模型. 安全与环境学报. 2023(08): 2607-2614 .
    13. 孙延辉,胡文博,马红林,王历民,杜华,李世涛. 基于Piper-PCA-Fisher的矿井突出水源判别模型构建及应用. 化工矿物与加工. 2023(09): 52-58+80 .
    14. 赵世毫,高林,陈原望,蒋明,向天麟,申业兴,许帅. 基于水化学特征分析的近地表井壁涌水来源识别技术. 矿业研究与开发. 2023(11): 150-156 .
    15. 赵乐乐,王亮,侯起阳,万战胜,郭庆彪. 基于PCA-RA和云模型的采空区建设场地稳定性评价. 金属矿山. 2022(03): 197-204 .
    16. 张胜军,丁亚恒,姜春露,李明,郑刘根. 基于水化学和氯同位素的煤矿矿井水来源识别与解析. 煤炭工程. 2022(06): 123-127 .
    17. 刘明淳,蒋加森,姜海涛,陈智斌,谢仁青. 基于PCA-EWM-TOPSIS耦合算法的地下开采矿山岩体质量分级. 黄金. 2022(06): 27-31 .
    18. 刘旭东,张瑞,万宝. 基于Piper-PCA-MLP神经网络的矿井涌水水源识别方法研究. 中国煤炭地质. 2022(07): 50-55 .
    19. 顾爱民,刘德民. 基于HCA-Bayes的矿井涌水水源识别. 华北科技学院学报. 2022(05): 20-27 .

    Other cited types(3)

Catalog

    Article views (120) PDF downloads (223) Cited by(22)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return