Advance Search

YU Xiaoge,LIU Yifei,ZHAI Peihe. Identification of mine water inrush source based on PCA-AWOA-ELM model[J]. Coal Science and Technology,2023,51(3):182−189

. DOI: 10.13199/j.cnki.cst.2021-0541
Citation:

YU Xiaoge,LIU Yifei,ZHAI Peihe. Identification of mine water inrush source based on PCA-AWOA-ELM model[J]. Coal Science and Technology,2023,51(3):182−189

. DOI: 10.13199/j.cnki.cst.2021-0541

Identification of mine water inrush source based on PCA-AWOA-ELM model

Funds: 

National Natural Science Foundation of China (42002282); Natural Science Foundation of Shandong Province (ZR2020KE023, ZR2021MD057)

More Information
  • Received Date: July 31, 2022
  • Available Online: April 26, 2023
  • Mine water inrush is one of the most threatening disasters in the coal mine production process. In order to ensure safe coal mine production and improve the accuracy of mine water inrush source identification, a water source identification model based on improved whale optimization algorithm coupling extreme learning machine is proposed. Take Daizhuang Coal Mine as an example, choose Na+, Ca2+, Mg2+, Cl, SO42−, HCO3 as the discrimination index, analyze and extract the main components of the evaluation index based on SPSS factor analysis. The correlation between the six ions is large, Ca2+ and Mg2+, Ca2+, Mg2+ and SO42−, Cl has reached more than 0.7, and the correlation between SO42− and Cl has also reached 0.68. Through principal component analysis, three principal components have been extracted, from six-dimensional space to three-dimensional space, while reducing the duplication of information between sample indicators. It also reduces the number of input layers of the limit learning machine and improves the generalization ability of the model for each type of data. Secondly, Secondly, the chaotic dynamic weight factor and the elite reverse mechanism are introduced to improve the whale algorithm. The improved whale optimization algorithm overcomes the disadvantage of random value of weight threshold of limit learning machine. The introduction of chaotic dynamic weight factor and elite reverse mechanism reduces the complexity of model calculation, improves the accuracy and speed of the algorithm, and jumps out of local optimization. Through training 38 groups of sample data, optimizing the weights and thresholds of the extreme learning machine, building a PCA-AWOA-ELM water source recognition model, and predicting 10 unknown test samples. The results show that the accuracy of the PCA-AWOA-ELM model is 100%, the accuracy of the PCA-WOA-ELM model is 90%, the accuracy of the PCA-ELM and ELM model is 60%, and the recognition accuracy, running speed and stability of the PCA-AWOA-ELM model are obvious. Higher than the PCA-WOA-ELM model, PCA-ELM model and ELM model, it provides an important guarantee for safe mine production.

  • [1]
    施龙青. 底板突水机理研究综述[J]. 山东科技大学学报(自然科学版),2009,28(3):17−23. doi: 10.16452/j.cnki.sdkjzk.2009.03.005

    SHI Longqing. Summary of Research on Mechanism of Water-inrush from Seam Floor[J]. Journal of Shandong University of Science and Technology(Natural Science),2009,28(3):17−23. doi: 10.16452/j.cnki.sdkjzk.2009.03.005
    [2]
    董书宁,王 皓,周振方. 我国煤矿水害防治工作现状及发展趋势[J]. 劳动保护,2020(8):58−60. doi: 10.3969/j.issn.1000-4335.2020.08.027

    DONG Shuning,WANG Hao,ZHOU Zhenfang. Experts introduce domestic coal mine water hazard prevention work[J]. Labour Protection,2020(8):58−60. doi: 10.3969/j.issn.1000-4335.2020.08.027
    [3]
    马 雷,钱家忠,赵卫东. 基于GIS和水质水温的矿井突水水源快速判别[J]. 煤田地质与勘探,2014,42(2):49−53. doi: 10.3969/j.issn.1001-1986.2014.02.010

    MA Lei,QIAN Jiazhong,ZHAO Weidong. An approach for quickly identifying water-inrush source of mine based on GIS and groundwater chemistry and temperature[J]. Coal Geology & Exploration,2014,42(2):49−53. doi: 10.3969/j.issn.1001-1986.2014.02.010
    [4]
    陈建平,潘光义,吴 丽,等. 基于环境同位素和水化学特征识别矿井涌水来源[J]. 环境化学,2018,37(6):1410−1420.

    CHEN Jianping,PAN Guangyi,WU Li,et al. Identifying the source of the groundwater based on the characteristics of environmental isotopes and water chemistry[J]. Environmental Chemistry,2018,37(6):1410−1420.
    [5]
    王心义,徐 涛,黄 丹. 距离判别法在相似矿区突水水源识别中的应用[J]. 煤炭学报,2011,36(8):1354−1358. doi: 10.13225/j.cnki.jccs.2011.08.028

    WANG Xinyi,XU Tao,HUANG Dan. Application of distance discriminance in identifying water inrush resource in similar coalmine[J]. Journal of China Coal Society,2011,36(8):1354−1358. doi: 10.13225/j.cnki.jccs.2011.08.028
    [6]
    陈红江,李夕兵,刘爱华. 矿井突水水源判别的多组逐步Bayes判别方法研究[J]. 岩土力学,2009,30(12):3655−3659. doi: 10.3969/j.issn.1000-7598.2009.12.016

    CHEN Hongjiang,LI Xibing,LIU Aihua. Studies of water source determination method of mine water inrush based on Bayes' multi-group stepwise discriminant analysis theory[J]. Rock and Soil Mechanics,2009,30(12):3655−3659. doi: 10.3969/j.issn.1000-7598.2009.12.016
    [7]
    张春雷,钱家忠,赵卫东,等. Bayes方法在矿井突水水源判别中的应用[J]. 煤田地质与勘探,2010,38(4):34−37. doi: 10.3969/j.issn.1001-1986.2010.04.008

    ZHANG Chunlei,QIAN Jiazhong,ZHAO Weidong,et al. The application of bayesian approach to discrimination of mine water-inrush source[J]. Coal Geology & Exploration,2010,38(4):34−37. doi: 10.3969/j.issn.1001-1986.2010.04.008
    [8]
    鲁金涛,李夕兵,宫凤强,等. 基于主成分分析与Fisher判别分析法的矿井突水水源识别方法[J]. 中国安全科学学报,2012,22(7):109−115. doi: 10.3969/j.issn.1003-3033.2012.07.018

    LU Jintao,LI Xibing,GONG Fengqiang,et al. Recognizing of mine water inrush sources based on principal components analysis and fisher discrimination analysis method[J]. China Safety Science Journal,2012,22(7):109−115. doi: 10.3969/j.issn.1003-3033.2012.07.018
    [9]
    陈红江,李夕兵,刘爱华,等. 用Fisher判别法确定矿井突水水源[J]. 中南大学学报(自然科学版),2009,40(4):1114−1120.

    CHEN Hongjiang,LI Xibing,LIU Aihua,et al. Identifying of mine water inrush sources by Fisher discriminant analysis method[J]. Journal of Central South University(Science and Technology),2009,40(4):1114−1120.
    [10]
    刘 鑫,陈陆望,林曼利,等. 采动影响下矿井突水水源Fisher判别与地下水补给关系反演[J]. 水文地质工程地质,2013,40(4):36−43. doi: 10.16030/j.cnki.issn.1000-3665.2013.04.021

    LIU Xin,CHEN Luwang,LIN Manli,et al. Fisher discriminant analysis for coal mining inrush water source under mining-induced disturbance and inversion of groundwater recharge relation[J]. Hydrogeology & Engineering Geology,2013,40(4):36−43. doi: 10.16030/j.cnki.issn.1000-3665.2013.04.021
    [11]
    李垣志,牛国庆,刘慧玲. 改进的GA-BP神经网络在矿井突水水源判别中的应用[J]. 中国安全生产科学技术,2016,12(7):77−81. doi: 10.11731/j.issn.1673-193x.2016.07.014

    LI Yuanzhi,NIU Guoqing,LIU Huiling. Application of improved GA- BP neural network on identification of water inrush source in mine[J]. Journal of Safety Science and Technology,2016,12(7):77−81. doi: 10.11731/j.issn.1673-193x.2016.07.014
    [12]
    钱家忠,吕 纯,赵卫东,等. Elman与BP神经网络在矿井水源判别中的应用[J]. 系统工程理论与实践,2010,30(1):145−150.

    QIAN Jiazhong,LYU Chun,ZHAO Weidong,et al. Comparison of application on Elman and BP neural networks in discriminating water bursting source of coal mine[J]. Systems Engineering-Theory & Practice,2010,30(1):145−150.
    [13]
    吴 岩,余智超. 神经网络在矿井突水水源判别中的应用[J]. 工矿自动化,2011,37(10):60−62.

    WU Yan,YU Zhichao. Application of neural network in water source distinguishing of mine water inrush[J]. Industry and Mine Automation,2011,37(10):60−62.
    [14]
    邵良杉,李相辰. 基于MIV-PSO-SVM模型的矿井突水水源识别[J]. 煤炭科学技术,2018,46(8):183−190. doi: 10.13199/j.cnki.cst.2018.08.030

    SHAO Liangshan,LI Xiangchen. Indentification of mine water inrush source based on MIV-PSO-SVM[J]. Coal Science and Technology,2018,46(8):183−190. doi: 10.13199/j.cnki.cst.2018.08.030
    [15]
    邵良杉,李印超,徐 波. 矿井突水水源识别的RS-LSSVM模型[J]. 安全与环境学报,2017,17(5):1730−1734.

    SHAO Liangshan,LI Yinchao,XU Bo. RS-LSSVM model for identifying and determinating the mining water inrush origin[J]. Journal of Safety and Environment,2017,17(5):1730−1734.
    [16]
    张瑞钢,钱家忠,马 雷,等. 可拓识别方法在矿井突水水源判别中的应用[J]. 煤炭学报,2009,34(1):33−38. doi: 10.3321/j.issn:0253-9993.2009.01.007

    ZHANG Ruigang,QIAN Jiazhong,MA Lei,et al. Application of extension identification method in mine water-bursting source discrimination[J]. Journal of China Coal Society,2009,34(1):33−38. doi: 10.3321/j.issn:0253-9993.2009.01.007
    [17]
    冯 琳,李凤莲,张雪英,等. 改进可拓识别方法及其在突水水源判别中的应用[J]. 工矿自动化,2015,41(2):61−65. doi: 10.13272/j.issn.1671-251x.2015.02.017

    FENG Lin,LI Fenglian,ZHANG Xueying,et al. Improved extension identification method and its application to water bursting source discrimination[J]. Industry and Mine Automation,2015,41(2):61−65. doi: 10.13272/j.issn.1671-251x.2015.02.017
    [18]
    张广炎. 基于鲸鱼算法优化极限学习机的热电偶非线性补偿方法[D]. 湘潭: 湘潭大学, 2019.

    ZHANG Guangyan. Nonlinear compensation method of thermocouple based on extreme learning machine optimized by whale algorithm[D]. Xiangtan: Xiangtan University, 2019.
    [19]
    任海峰, 严由吉, 吴青海. 基于SAPSO-ELM的瓦斯涌出量分源预测及应用[J/OL]. 煤田地质与勘探, 2021, 49(2): 102−109.

    REN Haifeng, YAN Youji, WU Qinghai. SAPSO-ELM gas emission prediction model and application based on split-source prediction[J/OL]. Coal Geology & Exploration, 2021, 49(2): 102−109.
    [20]
    董东林,陈昱吟,倪林根,等. 基于WOA-ELM算法的矿井突水水源快速判别模型[J]. 煤炭学报,2021,46(3):984−993. doi: 10.13225/j.cnki.jccs.2020.1827

    DONG Donglin,CHEN Yuyin,NI Lingen,et al. Fast discriminant model of mine water inrush source based on WOA-ELM algorithm[J]. Journal of China Coal Society,2021,46(3):984−993. doi: 10.13225/j.cnki.jccs.2020.1827
  • Related Articles

    [1]XU Changyou, CHEN Gang, ZHANG Qiuxia, WANG Bo, ZHANG Hongwang, LI Hongrui, QIN Weiwei, LI Muyang. Machine learning-based prediction method for open-pit mining truck speed distribution in manned operation[J]. COAL SCIENCE AND TECHNOLOGY, 2025, 53(S1): 435-442. DOI: 10.12438/cst.2023-1490
    [2]ZHANG Wei, LI Junxia, WU Lei, LI Bin. Research on fault diagnosis of idler bearing of belt conveyor based on 1DCNN-ELM[J]. COAL SCIENCE AND TECHNOLOGY, 2023, 51(S1): 383-389. DOI: 10.13199/j.cnki.cst.2022-1195
    [3]ZHU Saijun, JIANG Chunlu, BI Bo, XIE Hao, AN Shikai. Identification of mine water inrush source based on combinationweight-theory of improved grey relational degree[J]. COAL SCIENCE AND TECHNOLOGY, 2022, 50(4): 165-172.
    [4]SU Wei, JIANG Chunlu, ZHA Junzhen, ZHENG Liugen, XIE Huadong, HUANG Wendi, CHEN Yuanping. Identification of mine water inrush source based on objective combinedweights-improved set pair analysis model[J]. COAL SCIENCE AND TECHNOLOGY, 2022, 50(4): 156-164.
    [5]MA Li, ZHANG Jianguo, ZHANG Leiming, TU Yuhang, WU Jing, LIAN Kaiyuan. Study on prediction of blast casting results in open-pit minebased on IPSO-ELM model[J]. COAL SCIENCE AND TECHNOLOGY, 2021, 49(9): 69-75.
    [6]LIN Haifei, ZHOU Jie, GAO Fan, JIN Hongwei, YANG Zhuoya, LIU Shihao. Coal seam gas content prediction based on fusion of feature selection and machine learning[J]. COAL SCIENCE AND TECHNOLOGY, 2021, 49(5): 44-51.
    [7]CHEN Shaojie, LIU Jiutan, WANG Feng, ZHOU Jingkui, TANG Pengfei, GAO Zongjun. Technological yesearch on water source identiftcation of coastal coalmines based on PCA-RA[J]. COAL SCIENCE AND TECHNOLOGY, 2021, 49(2): 217-225. DOI: 10.13199/j.cnki.cst.2021.02.025
    [8]QU Xingyue, SHI Longqing. Discrimination on mine water inrush source based on Matlab factor analysis and Distance Distinguished Model[J]. COAL SCIENCE AND TECHNOLOGY, 2018, (8).
    [9]HAN Yukun ZHANG Yu, . Parameter optimization of BH38/2x400 coal plough based on improved NSGA- Il algorithm[J]. COAL SCIENCE AND TECHNOLOGY, 2017, (10).
    [10]Study on Prevention Method and Analysis of Water Inrush Sources in Construction Mine[J]. COAL SCIENCE AND TECHNOLOGY, 2013, (8).
  • Cited by

    Periodical cited type(8)

    1. 向鑫. 基于优化灰色关联度理论的矿井突水水源识别模型及应用. 水利规划与设计. 2025(08)
    2. 陶志勇. 煤矿涌水水源快速判识方法在神东矿区的应用. 中国煤炭. 2025(02): 79-87 .
    3. 谢潇,鲁璐. 基于TPE-LightGBM的平顶山煤田矿井水源判识模型研究. 陕西煤炭. 2025(06): 13-20 .
    4. 李双慧,朱宏军,朱开鹏,黄选明. 不连沟井田岩溶水水化学特征及其演化规律研究. 能源与环保. 2024(02): 155-162 .
    5. 王皓,孙钧青,曾一凡,尚宏波,王甜甜,乔伟. 蒙陕接壤区煤层顶板涌水水源智能判别方法. 煤田地质与勘探. 2024(04): 76-88 .
    6. 肖观红,鲁海峰. 基于PCA-GA-RF的矿井突水水源快速识别模型. 煤矿安全. 2024(06): 184-191 .
    7. 周全超,刘玲,李继升,殷裁云. 基于多种解析法和数值法求解巨厚砂岩水文地质参数. 煤炭科学技术. 2024(S1): 174-182 . 本站查看
    8. 曹思文,刘源,武亚遵,王雪奇. 基于多元统计和混合模型的矿井涌水构成比例判别. 煤炭工程. 2024(12): 133-139 .

    Other cited types(2)

Catalog

    Article views (100) PDF downloads (37) Cited by(10)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return