Advance Search
CHEN Fu,ZHU Yanfeng,MA Jing,et al. Mechanism, potential and regulation of carbon sequestration and sink enhancement in ecological restoration of mining areas in the Loess Plateau[J]. Coal Science and Technology,2023,51(1):502−513. DOI: 10.13199/j.cnki.cst.2023-2250
Citation: CHEN Fu,ZHU Yanfeng,MA Jing,et al. Mechanism, potential and regulation of carbon sequestration and sink enhancement in ecological restoration of mining areas in the Loess Plateau[J]. Coal Science and Technology,2023,51(1):502−513. DOI: 10.13199/j.cnki.cst.2023-2250

Mechanism, potential and regulation of carbon sequestration and sink enhancement in ecological restoration of mining areas in the Loess Plateau

Funds: 

National Natural Science Foundation of China (51974313,41907405); Natural Science Foundation of Jiangsu Province (BK20180641)

More Information
  • Received Date: December 09, 2022
  • Available Online: March 08, 2023
  • The ecological environment of mining areas in the Loess Plateau is extraordinary fragile, so it is crucial to achieve the carbon neutral vision to scientifically understand the mechanism and potential of carbon sequestration and sink enhancement in ecological restoration of mining areas in the Loess Plateau. Therefore, it is necessary to explore the key processes of carbon sink formation, the adaptability and resilience of restoration, and the potential of increasing carbon sink in the ecological restoration of the mining area in the Loess Plateau, as well as reveal the stability mechanism of the carbon pool in the reclaimed soil of the mining area. Finally, the key technologies of carbon fixation and sink enhancement in the ecological restoration of the mining area are clarified and elucidated. The results showed that: ① The critical processes of carbon sink formation in ecological restoration of mining areas in the Loess Plateau included plant photosynthetic carbon allocation, soil carbon sequestration, microbial carbon sequestration, soil respiration and so on; ② The ecological restoration adaptability of the mining areas in the Loess Plateau generally presented a trend of high in the southeast and low in the northwest, while the areas with poor adaptability were mainly distributed at the border between northern Shanxi and Inner Mongolia, as well as between central Ningxia and Inner Mongolia. The order of ecological resilience of typical mining areas was shown as follows: Mixed forest (43.2%-100.0%) > Broad-leaved forest (49.2%-83.2%) > Coniferous forest (47.9%-76.5%) > Grassland (39.1%-70.7%) > Shrub grassland (43.0%-69.0%). There was a positive correlation between the remediation years and soil carbon sink potential. The highest carbon sink potential generally occurred at 10-15 years of restoration. The mixed forests spent the longest ecological restoration time, but possessed the largest carbon sequestration potential; ③ The stability mechanism of reclaimed soil carbon pool was related to litter decomposition, clay mineral interaction, aggregate physical protection and microbial regulation; ④ The coupling repair technology including landform reconstruction, soil reconstruction, pioneer plant/microorganism and exogenous material is the optimal path for ecological restoration of coal mining areas in the Loess Plateau to fix carbon and increase carbon sink, and it is also conducive to the long-term stability and improvement of carbon sink.

  • [1]
    于昊辰,卞正富,陈 浮. 矿山土地生态动态恢复机制: 基于LDN框架的分析[J]. 中国土地科学,2020,34(9):86−95.

    YU Haochen,BIAN Zhengfu,CHEN Fu. Dynamic mechanism of land ecological restoration in mining area: based on Land Degradation Neutrality (LDN) framework[J]. China Land Science,2020,34(9):86−95.
    [2]
    朱 磊, 古文哲, 宋天奇, 等. 采空区煤矸石浆体充填技术研究进展与展望[J/OL]. 煤炭科学技术: 1-12[2022-12-29]. DOI: 10.13199/j.cnki.cst.2022-1725.

    ZHU Lei, GU Wenzhe, SONG Tianqi, et al. Research progress and prospect of coal gangue slurry filling technology in goaf[J/OL]. Coal Science and Technology, 1-12[2022-12-29]. DOI: 10.13199/j.cnki.cst.2022-1725.
    [3]
    李肖肖,骆占斌,马 静,等. 黄土高原矿区土壤细菌群落对地表塌陷和土地复垦的响应[J]. 环境化学,2020,39(5):1384−1394. doi: 10.7524/j.issn.0254-6108.2019090205

    LI Xiaoxiao,LUO Zhanbin,MA Jing,et al. Response of coal mining bacterial community to surface subsidence and land reclamation in the Loess Plateau[J]. Environmental Chemistry,2020,39(5):1384−1394. doi: 10.7524/j.issn.0254-6108.2019090205
    [4]
    白中科,周 伟,王金满,等. 再论矿区生态系统恢复重建[J]. 中国土地科学,2018,32(11):1−9. doi: 10.11994/zgtdkx.20181107.162318

    BAI Zhongke,ZHOU Wei,WANG Jinman,et al. Rethink on ecosystem restoration and rehabilitation of mining areas[J]. China Land Science,2018,32(11):1−9. doi: 10.11994/zgtdkx.20181107.162318
    [5]
    陈 浮, 赵 姣, 马 静, 等. 植被恢复对黄土高原露天矿区土壤碳氮磷功能微生物类群的影响[J/OL]. 土壤学报: 1-13[2022-12-29]. https://kns.cnki.net/kcms/detail/32.1119.P.20220729.1321.002.html.

    CHEN Fu, ZHAO Jiao, MA Jing, et al. Effects of vegetation restoration on functional groups related to soil carbon, nitrogen and phosphorus cycles in open-pit mining area of the loess plateau[J/OL]. Acta Pedologica Sinica, 1-13[2022-12-29]. http://kns.cnki.net/kcms/detail/32.1119.P.20220729.1321.002.html
    [6]
    陈 浮,王思遥,于昊辰,等. 碳中和目标下煤炭变革的技术路径[J]. 煤炭学报,2022,47(4):1452−1461. doi: 10.13225/j.cnki.jccs.2022.0192

    CHEN Fu,WANG Siyao,YU Haochen,et al. Technological innovation paths of coal industry for achieving carbon neutralization[J]. Journal of China Coal Society,2022,47(4):1452−1461. doi: 10.13225/j.cnki.jccs.2022.0192
    [7]
    陈 浮,曾思燕,杨永均,等. 从乡村振兴视角引导新时代矿区生态修复[J]. 环境保护,2018,46(12):39−42.

    CHEN Fu,ZENG Siyan,YANG Yongjun,et al. Guiding on current ecological restoration in post-mining area from the perspective of rural revitalization[J]. Environmental Protection,2018,46(12):39−42.
    [8]
    李智兰. 矿区复垦对土壤养分和酶活性以及微生物数量的影响[J]. 水土保持通报,2015,35(2):6−13.

    LI Zhilan. Soil nutrients, enzyme activity and microbe quantity in reclaimed soil in mining area[J]. Bulletin of Soil and Water Conservation,2015,35(2):6−13.
    [9]
    胡振琪,张子璇,孙 煌. 试论矿山生态修复的地质成土[J]. 煤田地质与勘探,2022,50(12):21−29. doi: 10.12363/issn.1001-1986.22.06.0463

    HU Zhenqi,ZHANG Zixuan,SUN Huang. Geological soil formation for ecological restoration of mining areas and its case study[J]. Coal Geology and Exploration,2022,50(12):21−29. doi: 10.12363/issn.1001-1986.22.06.0463
    [10]
    张 召,白中科,贺振伟,等. 基于RS与GIS的平朔露天矿区土地利用类型与碳汇量的动态变化[J]. 农业工程学报,2012,28(3):230−236.

    ZHANG Zhao,BAI Zhongke,HE Zhenwei,et al. Dynamic changes of land use type and carbon sinks based on RS and GIS in Pingshuo opencast coal mine[J]. Transactions of the Chinese Society of Agricultural Engineering,2012,28(3):230−236.
    [11]
    毕银丽,郭 芸,刘 峰,等. 西部煤矿区生物土壤结皮的生态修复作用及其碳中和贡献[J]. 煤炭学报,2022,47(8):2883−2895. doi: 10.13225/j.cnki.jccs.2022.0509

    BI Yinli,GUO Yun,LIU Feng,et al. Ecological restoration effect and carbon neutrality contribution of biological soil crusts in western mining area[J]. Journal of China Coal Society,2022,47(8):2883−2895. doi: 10.13225/j.cnki.jccs.2022.0509
    [12]
    陈 浮,朱燕峰,马 静,等. 生物炭+速生植物对工业场地周边土壤镉污染原位修复[J]. 煤炭学报,2021,46(5):1477−1486. doi: 10.13225/j.cnki.jccs.st21.0183

    CHEN Fu,ZHU Yanfeng,MA Jing,et al. In-situ remediation of Cd contaminated soil around industrial site by biochar combined with rank vegetation[J]. Journal of China Coal Society,2021,46(5):1477−1486. doi: 10.13225/j.cnki.jccs.st21.0183
    [13]
    张黎明,张绍良,侯湖平,等. 矿区土地复垦碳减排效果测度模型与实证分析[J]. 中国矿业,2015,24(11):65−70.

    ZHANG Liming,ZHANG Shoaling,HOU Huping,et al. Evaluation model and empirical study of carbon emission reduction effect from mining land reclamation[J]. China Mining Magazine,2015,24(11):65−70.
    [14]
    周广胜,周梦子,周 莉,等. 中国陆地生态系统增汇潜力研究展望[J]. 科学通报,2022,67(31):3625−3632. doi: 10.1360/TB-2022-0032

    ZHOU Guangsheng,ZHOU Mengzi,ZHOU Li,et al. Advances in the carbon sink potential of terrestrial ecosystems in China[J]. Chinese Science Bulletin,2022,67(31):3625−3632. doi: 10.1360/TB-2022-0032
    [15]
    刘祥宏,阎永军,刘 伟,等. 碳中和战略下煤矿区生态碳汇体系构建及功能提升展望[J]. 环境科学,2022,43(4):2237−2250.

    LIU Xianghong,YAN Yongjun,LIU Wei,et al. System construction and the function improvement of ecological carbon sink in coal mining areas under the carbon neutral strategy[J]. Environmental Science,2022,43(4):2237−2250.
    [16]
    WANG Biao,GONG Jirui,ZHANG Zihe,et al. Nitrogen addition alters photosynthetic carbon fixation, allocation of photoassimilates, and carbon partitioning of Leymus chinensis in a temperate grassland of Inner Mongolia[J]. Agricultural and Forest Meteorology,2019,279:107743. doi: 10.1016/j.agrformet.2019.107743
    [17]
    马 静,董文雪,朱燕峰,等. 东部平原矿区复垦对土壤微生物固碳潜力的影响[J]. 煤炭学报,2022,47(3):1306−1317.

    MA Jing,DONG Wenxue,ZHU Yanfeng,et al. Impact of land reclamation on the carbon sequestration potential of soil microorganisms in the disturbed mining area of eastern plain[J]. Journal of China Coal Society,2022,47(3):1306−1317.
    [18]
    黄 麟. 造林气候调节效应及其影响机理研究进展[J]. 生态学报,2021,41(2):469−478.

    HUANG Qi. A review on the climatic regulation effects of afforestation and its impact mechanisms[J]. Acta Ecologica Sinica,2021,41(2):469−478.
    [19]
    ZHANG Qi,MA Jing,YANG Yongjun,et al. Mining subsidence-induced microtopographic effects alter the interaction of soil bacteria in the sandy pasture, China[J]. Frontiers in Environmental Science,2021,9:656708. doi: 10.3389/fenvs.2021.656708
    [20]
    DE DEYN G B,CORNELISSEN J H C,BARDGETT R D. Plant functional traits and soil carbon sequestration in contrasting biomes[J]. Ecology Letters,2008,11(5):516−531. doi: 10.1111/j.1461-0248.2008.01164.x
    [21]
    刘亚龙, 王 萍, 汪景宽. 土壤团聚体的形成和稳定机制: 研究进展与展望 [J/OL]. 土壤学报: 1-18[2022-12-29]. https://kns.cnki.net/kcms/detail/32.1119.P.20220729.1322.004.html.

    LIU Yalong, WANG Ping, WANG Jingkuan. A review on the climatic regulation effects of afforestation and its impact mechanisms[J]. Acta Pedologica Sinica, 1-18[2022-12-29]. https://kns.cnki.net/kcms/detail/32.1119.P.20220729.1322.004.html.
    [22]
    赵 姣, 马 静, 朱燕峰, 等. 植被类型对黄土高原露采矿山复垦土壤碳循环功能基因的影响[J/OL]. 环境科学: 1-12[2022-12-29]. DOI: 10.13227/j.hjkx.202206219.

    ZHAO Jiao, MA Jing, ZHU Yanfeng, et al. Effects of Vegetation Types on Carbon Cycle Functional Genes in Reclaimed Soil from Open Pit Mines in the Loess Plateau[J]. Environmental Science, 1-12[2022-12-29]. DOI: 10.13227/j.hjkx.202206219.
    [23]
    HONG Songbai,YIN Guodong,PIAO Shilong,et al. Divergent responses of soil organic carbon to afforestation[J]. Nature Sustainability,2020,3(9):694−700. doi: 10.1038/s41893-020-0557-y
    [24]
    ZHU Yanfeng,GE Xiaoping,WANG Liping,et al. Biochar rebuilds the network complexity of rare and abundant microbial taxa in reclaimed soil of mining areas to cooperatively avert cadmium stress[J]. Frontiers in Microbiology,2022,13:972300. doi: 10.3389/fmicb.2022.972300
    [25]
    CAI Yuanfeng,ZHENG Yan,BODELIER Paul L E,et al. Conventional methanotrophs are responsible for atmospheric methane oxidation in paddy soils[J]. Nature Communications,2016,7(1):11728. doi: 10.1038/ncomms11728
    [26]
    CHAO Liang,JOSHU P Schimel,JULIE D Jastrow,et al. The importance of anabolism in microbial control over soil carbon storage[J]. Nature Microbiology,2017,2:17105. doi: 10.1038/nmicrobiol.2017.105
    [27]
    JING Shi,BAILEY Vanessa,DORHEIM Kalyn,et al. Historically inconsistent productivity and respiration fluxes in the global terrestrial carbon cycle[J]. Nature Communications,2022,13(1):1733. doi: 10.1038/s41467-022-29391-5
    [28]
    SHARMA Richa,PRADHAN Lolita,KUMARI Maya,et al. Assessment of carbon sequestration potential of tree species in amity university campus noida[J]. Environmental Sciences Proceedings,2021,3(1):52.
    [29]
    LUDěK Bujalský,SATOSHI Kaneda,PETR Dvorščíka,et al. In situ soil respiration at reclaimed and unreclaimed post-mining sites: Responses to temperature and reclamation treatment[J]. Ecological Engineering,2014,68:53−59. doi: 10.1016/j.ecoleng.2014.03.048
    [30]
    谢苗苗,刘金莹,陈 彬,等. 生态脆弱区复垦排土场干扰类型划分及影响因素分析[J]. 煤炭科学技术,2022,50(2):280−288.

    XIE Miaomiao,LIU Jinying,CHEN Bin,et al. Classification of disturbance types and influencing factors of reclamation dump in ecological fragile area[J]. Coal Science and Technology,2022,50(2):280−288.
    [31]
    王同智,薛 焱,包玉英,等. 不同复垦方式对黑岱沟露天矿排土场土壤有机碳的影响[J]. 安全与环境学报,2014,14(2):174−178.

    WANG Tongzhi,XUE Yan,BAO Yuying,et al. Soil organic carbon content of the spoiled bank under different reclamation modes, Heidaigou open pit, Inner Mongolia[J]. Journal of Safety and Environment,2014,14(2):174−178.
    [32]
    史利江,高 杉,姚晓军,等. 晋西北黄土丘陵区不同植被恢复下的土壤碳氮累积特征[J]. 生态环境学报,2021,30(9):1787−1796.

    SHI Lijiang,GAO Bin,YAO Xiaojun,et al. Characteristics of soil carbon and nitrogen accumulation under different vegetation restoration in the loess hilly region of northwest shanxi province[J]. Ecology and Environmental Sciences,2021,30(9):1787−1796.
    [33]
    张江周,李奕赞,李 颖,等. 土壤健康指标体系与评价方法研究进展[J]. 土壤学报,2022,59(3):603−616.

    ZHANG Jiangzhou,LI Yizan,LI Ying,et al. Advances in the indicator system and evaluation approaches of soil health[J]. Acta Pedologica Sinica,2022,59(3):603−616.
    [34]
    SHRESTHA R K,LAL R. Ecosystem carbon budgeting and soil carbon sequestration in reclaimed mine soil[J]. Environment International,2006,32(6):781−796. doi: 10.1016/j.envint.2006.05.001
    [35]
    李俊超,党廷辉,薛 江,等. 植被重建下露天煤矿排土场边坡土壤碳储量变化[J]. 土壤学报,2015,52(2):453−460. doi: 10.11766/trxb201402200074

    LI Junchao,DANG Yanhui,XUE Jiang,et al. Variability of soil organic carbon storage in dump slope of opencast coal mine under revegetation[J]. Acta Pedologica Sinica,2015,52(2):453−460. doi: 10.11766/trxb201402200074
    [36]
    马 静,董文雪,朱燕峰,等. 东部平原矿区复垦土壤微生物群落特征及其组装过程[J]. 环境科学,2022,43(7):3844−3853.

    MA Jing,DONG Wenxue,ZHU Yanfeng,et al. Characteristics and assembly process of reclaimed soil microbial communities in eastern plain mining areas[J]. Environmental Science,2022,43(7):3844−3853.
    [37]
    POONAM Panchal,CATHERINE Preece,JOSEP Peñuelas,et al. Soil carbon sequestration by root exudates[J]. Trends in Plant Science,2022,27(8):749−757. doi: 10.1016/j.tplants.2022.04.009
    [38]
    CHEN Chunmei, HALL S J, COWARD E. Hall, et al. Iron-mediated organic matter decomposition in humid soils can counteract protection[J]. Nature communications, 2020, 11(1): 2255.
    [39]
    TORIYAMA Jumpei,HAK Mao,IMAYA Akihiro,et al. Effects of forest type and environmental factors on the soil organic carbon pool and its density fractions in a seasonally dry tropical forest[J]. Forest Ecology and Management,2015,335:147−155. doi: 10.1016/j.foreco.2014.09.037
    [40]
    IMANSK Vladimir,DANIEL Bajan. Stability of soil aggregates and their ability of carbon sequestration[J]. Soil and Water Research,2014,9(3):111−118. doi: 10.17221/106/2013-SWR
    [41]
    刘满强,胡 锋,陈小云. 土壤有机碳稳定机制研究进展[J]. 生态学报,2007,27(6):2642−2650. doi: 10.3321/j.issn:1000-0933.2007.06.059

    LIU Manqiang,HU Feng,CHEN Xiaoyun. A review on mechanisms of soil organic carbon stabilization[J]. Acta Ecologica Sinica,2007,27(6):2642−2650. doi: 10.3321/j.issn:1000-0933.2007.06.059
    [42]
    CARTER Martin R. Soil quality for sustainable land management[J]. Agronomy Journal, 2002, 94(1): 3800.
    [43]
    李如剑,张彦军,赵 慢,等. 坡度和降雨影响土壤CO2通量和有机碳流失的模拟研究[J]. 环境科学学报,2016,36(4):1336−1342.

    LI Rujian,ZHANG Yanjun,ZHAO Man,et al. Simulation on the effects of slope and rainfall on soil CO2 flux and SOC loss[J]. Acta Scientiae Circumstantiae,2016,36(4):1336−1342.
    [44]
    胡振琪. 矿山复垦土壤重构的理论与方法[J]. 煤炭学报,2022,47(7):2499−2515. doi: 10.13225/j.cnki.jccs.yg22.0696

    HU Zhenqi. Theory and method of soil reconstruction of reclaimed mined land[J]. Journal of China Coal Society,2022,47(7):2499−2515. doi: 10.13225/j.cnki.jccs.yg22.0696
    [45]
    LI Yuan,ZU Yanqun,FANG Qixian,et al. Characteristics of heavy-metal tolerance and growth in two ecotypes of oxyria sinensisHemsl. grown on Huize Lead–Zinc Mining Area in Yunnan Province, China[J]. Communications in Soil Science and Plant Analysis,2013,44(16):2428−2442. doi: 10.1080/00103624.2013.803559
    [46]
    MORGAN J A,BENDING G D,WHITE P J. Biological costs and benefits to plant–microbe interactions in the rhizosphere[J]. Journal of Experimental Botany,2005,56(417):1729−1739. doi: 10.1093/jxb/eri205
    [47]
    Thavamani Palanisami,Samkumar R A,Satheesh V,et al. Microbes from mined sites: Harnessing their potential for reclamation of derelict mine sites[J]. Environmental Pollution,2017,230:495−505. doi: 10.1016/j.envpol.2017.06.056
    [48]
    陶雨萱, 郭 亮, 高 聪, 等. 代谢工程改造微生物固定二氧化碳研究进展[J]. 化工进展: 1-16[2022-12-29]. DOI: 10.16085/j.issn.1000-6613.2022-1545.

    LU Yuxuan, GUO Liang, GAO Cong, et al. Progress in metabolic engineering of microorganisms for CO2 fixation[J]. Chemical Industry and Engineering Progress, 1-16 [2022-12-29]. DOI: 10.16085/j.issn.1000-6613.2022-1545.
    [49]
    李树志,李学良,尹大伟. 碳中和背景下煤炭矿山生态修复的几个基本问题[J]. 煤炭科学技术,2022,50(1):286−292.

    LI Shuzhi,LI Xueliang,YIN Dawei. Several basic issues of ecological restoration of coal mines under background of carbon neutrality[J]. Coal Science and Technology,2022,50(1):286−292.
    [50]
    黄雨晗,曹银贵,周 伟,等. 秸秆生物炭对草原矿区重构土苜蓿生长状况的影响[J]. 生态学报,2021,41(2):588−602.

    HUANG Yuhan,CAO Yingui,ZHOU Wei,et al. Effects of straw biochar on the growth of Medicago falcata in the reconstructed soil of grassland mining area[J]. Acta Ecologica Sinica,2021,41(2):588−602.
  • Related Articles

    [1]HAO Chunming, WANG Yantang, YI Sihai, LIU Shuo. Evolution of microbial carbon sequestration potential in farmland soil driven by natural restoration in coal mine subsidence area[J]. COAL SCIENCE AND TECHNOLOGY, 2025, 53(7): 305-317. DOI: 10.12438/cst.2024-0681
    [2]JIA Mengxuan, WANG Jinman, LI Yuning, ZHANG Yafu, GAO Tingyu, WU Dawei. Ecological restoration of mines based on Nature-based Solution: a review[J]. COAL SCIENCE AND TECHNOLOGY, 2024, 52(8): 209-221. DOI: 10.12438/cst.2023-1306
    [3]GU Chengjin, YANG Baogui, LU Shaojie, GU Wenzhe, YANG Faguang. The new green mine construction in Longwanggou Coal Mine under the background of carbon peaking and carbon neutrality[J]. COAL SCIENCE AND TECHNOLOGY, 2023, 51(S1): 440-448. DOI: 10.13199/j.cnki.cst.2022-1612
    [4]ZHANG Junjian, CHANG Xiangchun, LYU Dawei, WANG Dongdong, DAI Xuguang, ZHANG Xiaoyang, JI Yukun, LI Menghang, LIU Haiyan, ZHENG Xue. Carbon dioxide geological storage system in coal seam development area under the premise of double carbon target[J]. COAL SCIENCE AND TECHNOLOGY, 2023, 51(S1): 206-214. DOI: 10.13199/j.cnki.cst.2022-0538
    [5]LYU Junfu, JIANG Ling, KE Xiwei, ZHANG Hai, LIU Qing, HUANG Zhong, ZHOU Tuo, ZHANG Man, WANG Junfeng, XIAO Feng, LU Jiayi, JIANG Xiaoguo. Future of circulating fluidized bed combustion technology in China for carbon neutralization[J]. COAL SCIENCE AND TECHNOLOGY, 2023, 51(1): 514-522. DOI: 10.13199/j.cnki.cst.2022-1609
    [6]HU Zhenqi, LI Yuanyuan, LI Gensheng, HAN Jiazheng, LIU Shuguang. Opportunities and challenges of land reclamation and ecological restoration in mining areas under carbon neutral target[J]. COAL SCIENCE AND TECHNOLOGY, 2023, 51(1): 474-483. DOI: 10.13199/j.cnki.cst.2023-0047
    [7]WANG Gensuo, LIU Honglei, WU Qiang, ZHAO Di, DUAN Cheng, WANG Hanyuan, ZHANG Aiwei. Resource development and utilization of positive environmental impacts of  abandoned mines under carbon neutrality[J]. COAL SCIENCE AND TECHNOLOGY, 2022, 50(6): 321-328.
    [8]LI Shuzhi, LI Xueliang, YIN Dawei. Several basic issues of ecological restoration of coal mines under background of carbon neutrality[J]. COAL SCIENCE AND TECHNOLOGY, 2022, 50(1): 286-292.
    [9]HE Xueqiu, TIAN Xianghui, SONG Dazhao. Progress and expectation of CO2 sequestration safety in coal seams[J]. COAL SCIENCE AND TECHNOLOGY, 2022, 50(1): 212-219.
    [10]SUN Tengmin, LIU Shiqi, WANG Tao. Research advances on evaluation of CO2 geological storage potential in China[J]. COAL SCIENCE AND TECHNOLOGY, 2021, 49(11): 10-20.
  • Cited by

    Periodical cited type(26)

    1. 陈浮, 夏依, 邹铭, 巩人杰, 骆占斌. “一带一路”共建国家矿区生态修复碳汇潜力评估. 煤炭学报. 2025(06)
    2. 余伟健,孙梅霖,杜锦滢,陈国梁,王闯. “双碳”目标下矿山生态修复及减排增汇途径研究进展. 矿业安全与环保. 2025(01): 38-46 .
    3. 郭玉良,刘世奇,桑树勋,陈伟伟,张芮,王庆刚,曹银南,滕鸿博,贠宇春,丁映红. 淮南典型资源枯竭矿区生态系统碳增汇修复模式研究. 西安建筑科技大学学报(自然科学版). 2025(01): 50-59 .
    4. 任昱,魏春光. 生态环境修复对鄂尔多斯黄河流域露天矿固碳增汇的影响机制研究. 煤矿现代化. 2025(04): 1-5 .
    5. 陈浮,华子宜,郭维红,朱燕峰,杨永均,马静. 美丽中国视域下矿山生态修复:逻辑演进、科学内涵和行动方略. 化工矿物与加工. 2024(02): 1-11 .
    6. 李健明,康雨欣,蒋福祯,宋明丹,祁凯斌,卢素锦,李正鹏. 基于Meta分析的煤矿区植被恢复对土壤有机碳储量的影响. 环境科学. 2024(03): 1629-1643 .
    7. 马静,华子宜,程彦郡,朱燕峰,杨永均,陈浮. 植被恢复类型对露采矿山复垦土壤丰富和稀有微生物类群的影响. 煤炭科学技术. 2024(02): 363-377 . 本站查看
    8. 张宇昂,李亚桐,杜忠毓,祁新华,侯红,陈光才. 矿区受损生态系统修复与碳汇潜力的文献计量研究. 林业科学研究. 2024(02): 144-155 .
    9. 胡振琪,张帆,张子璇,孙煌,钟安亚. 2023年土地科学研究重点进展评述及2024年展望——土地工程与信息技术分报告. 中国土地科学. 2024(03): 116-126 .
    10. 王董董,肖礼,毕银丽,聂文杰,张可. 神东矿区接种AMF对植物-土壤生态化学计量及养分回收的影响. 煤炭科学技术. 2024(05): 354-363 . 本站查看
    11. 张建华,周晓阳,郭旭婷,杜鑫鑫,安利,秦浩,刘勇,张红,徐龙超. 露天煤矿人工林植被碳密度分配格局及其影响因素. 干旱区研究. 2024(06): 974-983 .
    12. 李晓凯,张鹏程,孙梦雅,张炫,周沈立. 露天矿山生态修复后碳汇调查及计算方法研究. 环境科学与管理. 2024(08): 16-21 .
    13. 葛世荣,刘淑琴,樊静丽,赵毅鑫,滕腾. 低碳化现代煤基能源开发关键技术体系. 煤炭学报. 2024(07): 2949-2972 .
    14. 张鸽,张弛,林星杰,苗雨,李昉泽,庞治坤,谭海伟,信心. 双碳背景下铜尾矿综合利用方向探讨. 矿冶. 2024(04): 600-606 .
    15. 刘江,司洪涛,李成,朱冬雪,冯樊,严有龙,王科,王琛,毛铮,徐铭泽. 西南地区露天矿山修复对植被与土壤固碳效应的影响. 安徽林业科技. 2024(04): 15-19+30 .
    16. 杨岳,赵艳宁,樊如月,张雅楠,刘丽,丁勇. 草原露天矿山生态恢复对土壤有机碳的影响研究综述. 中国草地学报. 2024(09): 129-138 .
    17. 陈浮,朱燕峰,骆占斌,常媛媛,杨永均,马静. 黄土高原露天煤矿复垦土壤-植被系统恢复力及协同/权衡关系. 煤炭学报. 2024(11): 4590-4602 .
    18. 刘江,严有龙,马磊,李成,应凌霄,朱冬雪,王琛,余西游,王科,司洪涛,钟小华. 大型露天矿区生态修复植被碳储量研究——以重庆铜锣山为例. 资源环境与工程. 2024(06): 754-761 .
    19. 陈珲,崔一涵,汪海明,林建秋,吴红雷,彭景林,张军军,翟远征. 矿山生态修复及其固碳潜力研究进展. 地球科学. 2024(12): 4594-4607 .
    20. 顾清华,李学现,卢才武,阮顺领,江松. “双碳”背景下露天矿智能化建设新模式的技术路径. 金属矿山. 2023(05): 1-13 .
    21. 陈浮,朱燕峰,马静,杨永均,尤云楠,王丽萍. 东部平原采煤沉陷区降污固碳协同修复机制与关键技术. 煤炭学报. 2023(07): 2836-2849 .
    22. 李贵,陈瑞,刘振华,吴敏,童琪,刘森,谢沛源,童方平. 废弃矿区不同比例柏木混交林修复效应研究. 西部林业科学. 2023(05): 55-63 .
    23. 何辰,张庆梅. 碳中和愿景下甘肃省煤炭工业高质量发展路径选择. 煤炭加工与综合利用. 2023(10): 74-78 .
    24. 黄庆成,杨贺舒,佘乾仲,袁功林. 广西矿区碳汇核算及其价值分析. 环境生态学. 2023(12): 61-66 .
    25. 雷少刚,王维忠,李园园,杨星晨,周叶丽,段雅婷,赵小同,程伟. 北方大型露天矿区土壤有机碳库扰动与恢复研究. 煤炭科学技术. 2023(12): 100-109 . 本站查看
    26. 包维斌,叶红刚. 陇东黄土高原矿山地质环境影响评价及修复技术:以蒲河流域A废弃平硐采砂矿山为例. 能源与节能. 2023(12): 92-96 .

    Other cited types(15)

Catalog

    Article views (246) PDF downloads (156) Cited by(41)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return