Advance Search
LYU Junfu,JIANG Ling,KE Xiwei,et al. Future of circulating fluidized bed combustion technology in China for carbon neutralization[J]. Coal Science and Technology,2023,51(1):514−522. DOI: 10.13199/j.cnki.cst.2022-1609
Citation: LYU Junfu,JIANG Ling,KE Xiwei,et al. Future of circulating fluidized bed combustion technology in China for carbon neutralization[J]. Coal Science and Technology,2023,51(1):514−522. DOI: 10.13199/j.cnki.cst.2022-1609

Future of circulating fluidized bed combustion technology in China for carbon neutralization

Funds: 

Consulting Research Project of Chinese Academy of Engineering (2020-XY-10); Science and Technology Project "Basic Energy Technology Research Program" (II) of China Huaneng Group Co., Ltd.(HNKJ21-H31)

More Information
  • Received Date: October 14, 2022
  • Available Online: March 08, 2023
  • More attention is paid on the circulating fluidized bed (CFB) combustion technology because of its advantage in low cost emission control. Recently, great achievements have been realized in China. The development history of CFB combustion technology in China for decades is reviewed in this paper, from learning to independent technological innovation. High-performance CFB boilers, energy-saving CFB boilers and ultra-low emissions CFB boilers have be successively developed, while improving steam parameters and realizing large-scale. At present, China has become the largest equipment supplier and user of CFB boilers in the world. As an important part of China's coal-fired power generation system, important contributions have been made to reliable and cheap power supply and low-quality fuel consumption. For the carbon neutralization, coal will be indispensable in the security of power system as the guaranteed energy. As the main way of efficient and clean utilization of low calorific value coal and high sulfur anthracite, greater advantages of CFB boiler in deep peak regulation and rapid load changing flexibility should be exploited. To meet the peak regulating demand of high proportion of new energy consumption, pulverized coal CFB technology can be developed, distributed small-capacity high-parameter CFBs can be explored, and the potential of 0-100% load long-term combustion break and fast restart of CFB units can be explored, so as to further improve the operational flexibility of CFB units. On the basis of operation flexibility, the advantages of CFB boiler fuel flexibility are used to realize high-sulfur anthracite ultra-supercritical high-efficiency power generation and to achieve ultra-low emissions simultaneously. Furthermore, mixed fuel CFB power generation should be developed to realize the consumption of low-carbon combustible wastes such as municipal sludge, domestic waste, biomass and other inferior fuels from of coal mining and washing. In addition, ultra-low emission control technology under flexible operation and intelligent CFB power generation technology should be developed to assist the transformation and development of China's energy structure.

  • [1]
    国家统计局. 中国统计年鉴2021[M]. 北京: 中国统计出版社, 2021
    [2]
    袁 亮,张 农,阚甲广,等. 我国绿色煤炭资源量概念、模型及预测[J]. 中国矿业大学学报,2018,47(1):1−8.

    YUAN Liang,ZHANG Nong,KAN Jiaguang,et al. The concept, model and reserve forecast of green coal resources in China[J]. Journal of China University of Mining & Technology,2018,47(1):1−8.
    [3]
    谢和平,王金华,王国法,等. 煤炭革命新理念与煤炭科技发展构想[J]. 煤炭学报,2018,43(5):1187−1197.

    XIE Heping,WANG Jinhua,WANG Guofa,et al. New ideas of coal revolution and layout of coal science and technology development[J]. Journal of China Coal Society,2018,43(5):1187−1197.
    [4]
    BO Leckner. Fluidized bed combustion: mixing and pollutant limitation[J]. Progress in Energy and Combustion Science,1998,24(1):31−61.
    [5]
    JOHNSSON J E. Formation and reduction of nitrogen oxides in fluidized-bed combustion[J]. Fuel,1994,73(9):1398−1415. doi: 10.1016/0016-2361(94)90055-8
    [6]
    徐旭常, 吕俊复, 张 海. 燃烧理论与燃烧设备[M]. 北京: 科学出版社, 2012.
    [7]
    WANG X,GIBBS B M,RHODES M J. Impact of air staging on the fate of NO and N2O in a circulating fluidized-bed combustor[J]. Combustion and Flame,1994,99(3/4):508−515. doi: 10.1016/0010-2180(94)90043-4
    [8]
    李建锋,郝继红,吕俊复,等. 中国 300 MWe 级循环流化床锅炉机组运行现状分析[J]. 锅炉技术,2010,41(5):37−41. doi: 10.3969/j.issn.1672-4763.2010.05.010

    LI Jianfeng,HAO Jihong,LYU Junfu,et al. Status of 300 MWe circulating fluidized bed boiler operation in China[J]. Boiler Technology,2010,41(5):37−41. doi: 10.3969/j.issn.1672-4763.2010.05.010
    [9]
    BASU P. Combustion of coal in circulating fluidized-bed boilers: a review[J]. Chemical Engineering Science,1999,54(22):5547−5557.
    [10]
    YUE Guangxi,CAI Runxia,LYU Junfu,et al. From a CFB reactor to a CFB boiler - the review of R&D progress of CFB coal combustion technology in China[J]. Powder Technology,2017,316:18−28. doi: 10.1016/j.powtec.2016.10.062
    [11]
    ARJUNWADKAR A,BASU P,ACHARYA B. A review of some operation and maintenance issues of CFBC boilers[J]. Applied Thermal Engineering,2016,102:672−694. doi: 10.1016/j.applthermaleng.2016.04.008
    [12]
    习近平. 在第七十五届联合国大会一般性辩论上的讲话[N]. 中华人民共和国国务院公报, 2020-09-22(3).
    [13]
    杨海瑞,BO Leckner,RAFAL Kobylecki,等. 国际对话: “碳达峰、碳中和”背景下循环流化床锅炉的发展与挑战[J]. 电力学报,2022,37(2):118−120.

    YANG Hairui,BO Leckner,RAFAL Kobylecki,et al. International Dialogue: Development and challenges of CFB boiler under the background of “Carbon emission peak and carbon neutralization”[J]. Journal of Electric Power,2022,37(2):118−120.
    [14]
    YUE Guangxi, YANG Hairui, LYU Junfu, et al. Latest development of CFB boilers in China [C]//Proceedings of the 20th International Conference on Fluidized Bed Combustion. Xi’an: 2009, 3-12.
    [15]
    杨海瑞,岳光溪,王 宇,等. 循环流化床锅炉物料平衡分析[J]. 热能动力工程,2005,20(3):291−295. doi: 10.3969/j.issn.1001-2060.2005.03.018

    YANG Hairui,YUE Guangxi,WANG Yu,et al. Analysis of mass balance in a circulating fluidized bed boiler[J]. Journal of Engineering for Thermal Energy and Power,2005,20(3):291−295. doi: 10.3969/j.issn.1001-2060.2005.03.018
    [16]
    LI Shaohua,YANG Hairui,ZHANG Hai. Measurements of solid concentration and particle velocity distributions near the wall of a cyclone[J]. Chemical Engineering Journal,2009,150(1):168−173. doi: 10.1016/j.cej.2008.12.019
    [17]
    JIN Xiaozhong,LYU Junfu,YANG Hairui,et al. Comprehensive mathematical model for coal combustion in the circulating fluidized bed combustor[J]. Tsinghua Science and Technology,2010,6(4):319−325.
    [18]
    LU Junfu,ZHANG Jiansheng,YUE Guangxi,et al. Heat transfer coefficient calculation method of the heater in the circulating fluidized bed furnace[J]. Heat Transfer,2002,31(7):540−550. doi: 10.1002/htj.10056
    [19]
    骆仲泱,何宏舟,王勤辉,等. 循环流化床锅炉技术的现状及发展前景[J]. 动力工程,2004(6):761−767.

    LUO Zhongyang,HE Hongzhou,WANG Qinhui,et al. Status quo-technology of circulating fluidized bed boiler and its prospects of development[J]. Journal of Chinese Society of Power Engineering,2004(6):761−767.
    [20]
    YUE Guangxi, LYU Junfu, ZHANG Hai, et al. Design theory of circulating fluidized bed boilers[C]//Proceeding of the 18th International Conference on Fluidized Bed Combustion. Toronto: ASME, 2005: 135−146.
    [21]
    杨 石, 杨海瑞, 吕俊复, 等. 基于流态重构的低能耗循环流化床锅炉技术[J]. 电力技术, 2010, 19(2): 9−16.

    YANG Shi, YANG Hairui, LYU Junfu, et al. The lower energy consumption(LEC) CFB technology based on state specification design theory[J]. Electric Power Technology, 2010, 19(2): 9−16.
    [22]
    SU Jianmin,HU Nan. Application of fluidization reconstruction energy-saving combustion technology on 300MW CFB boiler[J]. Advanced Materials Research,2012,516-517:140−145. doi: 10.4028/www.scientific.net/AMR.516-517.140
    [23]
    汪佩宁, 蔡润夏, 柳成亮, 等. 300 MWe节能型循环流化床锅炉的设计与运行[J]. 沈阳工程学院学报(自然科学版), 2016, 12(4): 308-313.

    WANG Peining, CAI Runxia, LIU Chengliang, et al. Design and operation of a 300 MWe low energy consumption CFB boiler[J]. Journal of Shenyang Institute of Engineering( Natural Science), 2016, 12(4): 308-313.
    [24]
    蔡润夏, 柯希玮, 葛荣存, 等. 循环流化床超细石灰石炉内脱硫研究[J]. 中国电机工程学报, 2018, 38(10): 3042-3048,3155.

    CAI Runxia, KE Xiwei, GE Rongcun, et al. The in-situ desulfurization with ultra-fine limestone for circulating fluidized bed boilers[J]. Proceedings of the CSEE, 2018, 38(10): 3042-3048,3155.
    [25]
    CAI Runxia,KE Xiwei,HUANG Yiqun,et al. Applications of ultrafine limestone sorbents for the desulfurization process in CFB boilers[J]. Environmental Science & Technology,2019,53(22):13514−13523.
    [26]
    柯希玮,蒋 苓,吕俊复,等. 循环流化床燃烧低污染排放技术研究展望[J]. 中国工程科学,2021,23(3):120−128.

    KE Xiwei,JIANG Ling,LYU Junfu,et al. Prospects for the low pollutant emission control of circulating fluidized bed combustion technology[J]. Strategic Study of CAE,2021,23(3):120−128.
    [27]
    程乐鸣, 周星龙, 郑成航, 等. 大型循环流化床锅炉的发展[J]. 动力工程, 2008, 28(6): 817-826.

    CHENG Lemin, ZHOU Xinglong, ZHENG Chenghang, et al. Development of large-scale circulating fluidized bed boiler [J] Journal of Chinese Society of Power Engineering, 2008, 28(6): 817-826.
    [28]
    胡 南,刘雪敏,杨 石,等. 双分离器并联CFB系统的稳定性分析[J]. 动力工程学报,2013,33(7):497−501.

    HU Nan,LIU Xuemin,YANG Shi,et al. Stability analysis on CFB system with two cyclones in parallel[J]. Journal of Chinese Society of Power Engineering,2013,33(7):497−501.
    [29]
    胡 南,郭兆君,杨海瑞,等. CFB锅炉炉膛内颗粒横向扩散系数研究[J]. 动力工程学报,2016,36(3):168−171,206. doi: 10.3969/j.issn.1674-7607.2016.03.001

    HU Nan,GUO Zhaojun,YANG Hairui,et al. Experimental study on lateral dispersion coefficient of solid particles in a CFB boiler[J]. Journal of Chinese Society of Power Engineering,2016,36(3):168−171,206. doi: 10.3969/j.issn.1674-7607.2016.03.001
    [30]
    鲁佳易, 卢啸风, 王 虎, 等. 引进300 MW循环流化床锅炉后燃特性试验研究[J]. 中国电机工程学报, 2012, 32(8): 12-18.

    LU Jiayi, LU Xiaofeng, WANG Hu, et al. Experimental study on post combustion characteristics of the imported 300 MW circulating fluidized bed boiler [J]. Proceedings of the CSEE, 2012, 32(8): 12-18.
    [31]
    周 旭,杨 冬,肖 峰,等. 超临界循环流化床锅炉中等质量流速水冷壁流量分配及壁温计算[J]. 中国电机工程学报,2009,29(26):13−18. doi: 10.3321/j.issn:0258-8013.2009.26.003

    ZHOU Xu,YANG Dong,XIAO Feng,et al. Mass flow rate profile and metal temperature calculation in water wall of an supercritical circulating fluidized bed boiler at medium mass flow rate[J]. Proceedings of the CSEE,2009,29(26):13−18. doi: 10.3321/j.issn:0258-8013.2009.26.003
    [32]
    CAI Runxia, KE Xiwei, LYU Junfu, et al. Progress of circulating fluidized bed combustion technology in China: a review[J]. Clean Energy, 2017, 1(1): 36−49.
    [33]
    凌 文,吕俊复,周 托,等. 660 MW超超临界循环流化床锅炉研究开发进展[J]. 中国电机工程学报,2019,39(9):2515−2523.

    LING Wen,LYU Junfu,ZHOU Tuo,et al. Research and development progress of the 660 MW Ultra-supercritical circulating fluidized bed boiler[J]. Proceedings of the CSEE,2019,39(9):2515−2523.
    [34]
    肖惠仁,姚禹歌,张 缦,等. 流化床锥形阀流量特性实验研究[J]. 煤炭学报,2021,46(5):1694−1700.

    XIAO Huiren,YAO Yuge,ZHANG Man,et al. Experimental investigation on flow characteristics of fluidized bed cone valve[J]. Journal of China Coal Society,2021,46(5):1694−1700.
    [35]
    莫 鑫,黄逸群,向柏祥,等. 燃煤循环流化床锅炉中并联分离器的性能实验研究[J]. 煤炭学报,2016,41(10):2503−2507.

    MO Xin,HUANG Yiqun,XIANG Baixiang,et al. Experimental study on the performance of parallel cyclones in a coal-fired CFB boiler[J]. Journal of China Coal Society,2016,41(10):2503−2507.
    [36]
    聂 立, 巩李明, 邓启刚, 等. 东方660 MW高效超超临界CFB锅炉的设计[J]. 电站系统工程, 2019, 35(4): 21−24.

    NIE Li, GONG Liming, DENG Qigang, et al. Design of Dongfang 660 MW highly-efficient ultra-supercritical CFB boiler [J]. Power System Engineering, 2019, 35(4): 21−24.
    [37]
    陈陆剑,陶 欣,张 缦,等. 660 MW超超临界CFB锅炉物料平衡模拟[J]. 煤炭学报,2020,45(11):3913−3920.

    CHEN Lujian,TAO Xin,ZHANG Man,et al. Simulation of material balance in a 660 MW ultra-supercritical CFB boiler[J]. Journal of China Coal Society,2020,45(11):3913−3920.
    [38]
    尚曼霞, 黄 中, 张 缦, 等. 一种极窄筛分粒径粉煤循环流化床燃烧系统[P]. 中国专利: CN114353059A, 2022-04-15.
    [39]
    李金晶,李 燕,吕俊复,等. 循环流化床锅炉热惯性分析[J]. 热能动力工程,2009,24(5):609−613.

    LI Jinjing,LI Yan,LU Junfu,et al. An analysis of thermal inertia of a CFB(circulating fluidized bed) boiler[J]. Journal of Engineering for Thermal Energy and Power,2009,24(5):609−613.
    [40]
    吕俊复,佟博恒,董建勋,等. 循环流化床内煤矸石一维燃烧模型[J]. 煤炭学报,2016,41(10):2418−2425.

    LYU Junfu,TONG Boheng,DONG Jianxun,et al. One-dimensional model of coal gangue combustion in circulating fluidized bed boiler[J]. Journal of China Coal Society,2016,41(10):2418−2425.
    [41]
    张瑞卿,杨海瑞,吕俊复,等. 循环流化床锅炉炉膛的传热计算[J]. 动力工程学报,2011,31(4):248−252.

    ZHANG Ruiqing,YANG Hairui,LYU Junfu,et al. Calculation of heat transfer in furnace of a circulating fluidized bed boiler[J]. Journal of Chinese Society of Power Engineering,2011,31(4):248−252.
    [42]
    贺辉宝, 胡 南, 吕俊复, 等. 低灰分燃料循环流化床锅炉的外加物料河沙粒度分析. 动力工程学报, 2010, 30(4): 409−414.

    HE Huibao, HU Nan, LYU Junfu, et al. Sand size of a circulating fluidized bed boiler fired low ash fuel. Journal of Chinese Society of Power Engineering, 2010, 30(4): 409−414.
    [43]
    张 海, 吕俊复, 岳光溪. 美国能源部Coal FIRST计划介绍[C]//中国动力工程学会锅炉专业委员会2020年会, 成都: 2020.

    ZHANG Hai, LYU Junfu, YUE Guangxi. Introduction of Coal FIRST Initiative[C]//2020 Annual meeting of the Chinese Power Engineering Society Boiler, Chengdu:2020.
    [44]
    LI Zhouhang,WU Yuxin,LU Junfu,et al. Heat transfer to supercritical water in circular tubes with circumferentially non-uniform heating[J]. Applied Thermal Engineering,2014,70(1):190−200. doi: 10.1016/j.applthermaleng.2014.05.013
    [45]
    LI Zhouhang,WU Yuxin,TANG Guoli,et al. Comparison between heat transfer to supercritical water in a smooth tube and in an internally ribbed tube[J]. International Journal of Heat and Mass Transfer,2015,84:529−541. doi: 10.1016/j.ijheatmasstransfer.2015.01.047
    [46]
    LI Zhouhang,LU Junfu,TANG Guoli,et al. Effects of rib geometries and property variations on heat transfer to supercritical water in internally ribbed tubes[J]. Applied Thermal Engineering,2015,78:303−314. doi: 10.1016/j.applthermaleng.2014.12.067
    [47]
    TANG Guoli,ZHANG Man,GU Junping,et al. Thermal-hydraulic calculation and analysis on evaporator system of a 660 MWe ultra-supercritical CFB boiler[J]. Applied Thermal Engineering,2019,151:385−393. doi: 10.1016/j.applthermaleng.2019.01.060
    [48]
    TANG Guoli,LI Zhouhang,LYU Junfu,et al. The critical mass flux for positive flow characteristic of heated tubes in the vertical water wall[J]. Applied Thermal Engineering,2019,153:29−38. doi: 10.1016/j.applthermaleng.2019.02.076
    [49]
    高 琴, 孔 皓, 杨海瑞, 等. 超高参数二次再热循环流化床锅炉技术可行性分析[J]. 热力发电, 2020,49(6),32-37.

    GAO Qin, KONG Hao, YANG Hairui, et al. Feasibility analysis for ultra-high parameter CFB boiler with secondary reheat[J]. Thermal Power Generation, 2020, 49(6), 32-37.
    [50]
    YAO Yuge,JIANG Ling,DENG Boyu,et al. Heat transfer analysis of stationary bed materials in a CFB boiler after a sudden power failure[J]. Fuel Processing Technology,2021,211:106857.
    [51]
    YAO Yuge,JIANG Ling,XIAO Huiren,et al. Restart-up performance of a CFB boiler after a sudden power failure accident[J]. Journal of Thermal Science,2022,31(3):830−839. doi: 10.1007/s11630-022-1585-x
    [52]
    JIANG Ling,LI Yiran,YAO Yuge,et al. Heat transfer and protection of high-temperature reheater of a 660 MW circulating fluidized bed boiler after black out[J]. Applied Thermal Engineering,2022,213:118654. doi: 10.1016/j.applthermaleng.2022.118654
    [53]
    王鹏程,蔡 晋,王 珂,等. 超临界 350 MW 循环流化床锅炉煤种变化对运行的影响[J]. 热力发电,2021,50(3):145−151.

    WANG Pengcheng,CAI Jin,WANG Ke,et al. Influence of coal variation on operation performance of supercritical 350 MW CFB boiler[J]. Thermal Power Generation,2021,50(3):145−151.
    [54]
    尹炜迪,李 博,吴玉新,等. 循环流化床锅炉煤泥燃烧行为模型[J]. 煤炭学报,2015,40(7):1628−1633.

    YIN Weidi,LI Bo,WU Yuxin,et al. Model of coal slime combustion behavior in CFB boiler[J]. Journal of China Coal Society,2015,40(7):1628−1633.
    [55]
    张 平,陈陆剑,江 华,等. 300 MW循环流化床锅炉大比例掺烧煤泥试验研究[J]. 洁净煤技术,2020,26(1):65−70.

    ZHANG Ping,CHEN Lujian,JIANG Hua,et al. Research on large proportion of coal slimeco-combustion in a 300 MW CFB boiler[J]. Clean Coal Technology,2020,26(1):65−70.
    [56]
    柯希玮, 吕俊复, 郭学茂, 等. 高参数生物质循环流化床锅炉技术研发与应用[J]. 热力发电, 2022, 51(6): 1−8.

    KE Xiwei, LYU Junfu, GUO Xuemao, et al. Development and application of the biomass-fired circulating fluidized bed boiler with high steam parameters [J]. Thermal Power Generation, 2022, 51(6): 1−8.
    [57]
    柯希玮,张 缦,杨海瑞,等. 循环流化床锅炉NOx生成和排放特性研究进展[J]. 中国电机工程学报,2021,41(8):2757−2770.

    KE Xiwei,ZHANG Man,YANG Hairui,et al. Research progress on the characteristics of NOx emission in circulating fluidized bed boiler[J]. Proceedings of the CSEE,2021,41(8):2757−2770.
  • Cited by

    Periodical cited type(2)

    1. 马力通,白月姝,梁宏旺,孙慎光. 预处理对褐煤非燃料化利用影响的研究进展. 化学与生物工程. 2025(03): 1-7 .
    2. 邓军,张敏,易欣,白祖锦,王彩萍,王凯. 煤矿采空区微生物驯化及抑制煤自燃特性. 煤炭学报. 2025(01): 379-391 .

    Other cited types(2)

Catalog

    Article views (347) PDF downloads (113) Cited by(4)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return