Advance Search
ZHANG Dangyu,WU Bin,JIA Jing,et al. Construction and application of “Dual-drive” pre-warning system for coal mine water disaster based on microseismic data and model[J]. Coal Science and Technology,2023,51(S1):242−255. DOI: 10.13199/j.cnki.cst.2022-2228
Citation: ZHANG Dangyu,WU Bin,JIA Jing,et al. Construction and application of “Dual-drive” pre-warning system for coal mine water disaster based on microseismic data and model[J]. Coal Science and Technology,2023,51(S1):242−255. DOI: 10.13199/j.cnki.cst.2022-2228

Construction and application of “Dual-drive” pre-warning system for coal mine water disaster based on microseismic data and model

More Information
  • Received Date: September 17, 2022
  • Available Online: May 18, 2023
  • At the present stage, more and more mines in China are entering the deep mining and lower group coal mining period. The coal seam mining is seriously threatened by karst water, the hidden danger of water inrush in the deep mine is unclear, and the lack of scientific and effective water inrush monitoring and early warning means in the mining process is the main reason for the water inrush disaster in the mine.In order to consolidate the foundation of early warning and monitoring of water disasters, a “double drive” micro earthquake early warning framework for coal mine water disasters is proposed. Using data drive and model drive, the risk level and scope of water inrush from the floor of the working face are monitored dynamically in real time, and the trend of water inrush risk is predicted intelligently.Under the framework of data driving, taking the temporal and spatial evolution law of microseismic events as the breakthrough point, through the inversion and attribute analysis of the source mechanism of microseismic events, it provides a basis for judging the triggering cause of microseismic events, the rupture trend and the formation of water diversion channels. In combination with the changes of hydrological dynamic data, it establishes the corresponding criteria for water inrush and evaluates the risk of water inrush.Under the framework of model driven, a deep learning model with multiple algorithms such as classification prediction and cluster analysis is constructed. The typical microseismic event cluster is used as the model input to quantitatively and dynamically predict the spatial range and concentration of future microseismic events, and then determine the water inrush risk level and risk area. Based on the “double drive” early-warning technology of coal mine water disaster based on microseismic data and model, the corresponding regional 3D intelligent early-warning platform of coal mine water disaster is developed, which realizes the dynamic intelligent early-warning prediction of water disaster risk characteristics and 3D visual display of dangerous areas.The practice has proved that the “double drive” microseismic early warning system using deterministic data research and intelligent model prediction has a remarkable effect on predicting the level and scope of water inrush risk, and has realized accurate early warning and prevention and control of high-risk areas of floor water damage.

  • [1]
    陈 浮,王思遥,于昊辰,等. 碳中和目标下煤炭变革的技术路径[J]. 煤炭学报,2022,47(4):1452−1461. doi: 10.13225/j.cnki.jccs.2022.0192

    CHEN Fu,WANG Siyao,YU Haochen,et al. Technological innovation paths of coal industry for achieving carbon neutralization[J]. Journal of China Coal Society,2022,47(4):1452−1461. doi: 10.13225/j.cnki.jccs.2022.0192
    [2]
    郭文兵,白二虎,张 璞,等. 新近系含水层下厚煤层综放安全绿色开采及水资源清洁利用[J]. 煤炭科学技术,2022,50(5):30−37. doi: 10.13199/j.cnki.cst.2021-1474

    GUO Wenbing,BAI Erhu,ZHANG Pu,et al. Safe and green mining of thick coal seam under Neogene aquifer and clean utilization of water resources[J]. Coal Science and Technology,2022,50(5):30−37. doi: 10.13199/j.cnki.cst.2021-1474
    [3]
    赵庆彪. 奥灰岩溶水害区域超前治理技术研究及应用[J]. 煤炭学报,2014,39(6):1112−1117.

    ZHAO Qingbiao. Ordovician limestone karst water disaster regional advanced governance technology study and application[J]. Journal of China Coal Society,2014,39(6):1112−1117.
    [4]
    景国勋,秦瑞琪. 2011—2020年我国煤矿水害事故相关因素特征分析[J]. 安全与环境学报,2022,22(4):2297−2304. doi: 10.13637/j.issn.1009-6094.2021.0707

    JING Guoxun,QIN Ruiqi. Analysis on the characteristics of correlative factors in coal mine water disasters from 2011 to 2020[J]. Journal of Safety and Environment,2022,22(4):2297−2304. doi: 10.13637/j.issn.1009-6094.2021.0707
    [5]
    尹尚先,王 屹,尹慧超,等. 深部底板奥灰薄灰突水机理及全时空防治技术[J]. 煤炭学报,2020,45(5):1855−1864. doi: 10.13225/j.cnki.jccs.2020.0398

    YIN Shangxian,WANG Yi,YIN Huichao,et al. Mechanism and full-time-space prevention and control technology of water inrush from Ordovician and thin limestone in deep mines[J]. Journal of China Coal Society,2020,45(5):1855−1864. doi: 10.13225/j.cnki.jccs.2020.0398
    [6]
    赵庆彪,蒋勤明,高春芳. 邯邢矿区深部煤层底板突水机理研究[J]. 煤炭科学技术,2016,44(3):117−121,176. doi: 10.13199/j.cnki.cst.2016.03.023

    ZHAO Qingbiao,JIANG Qinming,GAO Chunfang. Study on floor water inrush mechanism of deep seam in Hanxing Mining Area[J]. Coal Science and Technology,2016,44(3):117−121,176. doi: 10.13199/j.cnki.cst.2016.03.023
    [7]
    许家林. 煤矿绿色开采20年研究及进展[J]. 煤炭科学技术,2020,48(9):1−15. doi: 10.13199/j.cnki.cst.2020.09.001

    XU Jialin. Research and progress of coal mine green mining in 20 years[J]. Coal Science and Technology,2020,48(9):1−15. doi: 10.13199/j.cnki.cst.2020.09.001
    [8]
    武 强. 我国矿井水防控与资源化利用的研究进展、问题和展望[J]. 煤炭学报,2014,39(5):795−805. doi: 10.13225/j.cnki.jccs.2014.0478

    WU Qiang. Progress, problems and prospects of prevention and control technology of mine water and reutilization in China[J]. Journal of China Coal Society,2014,39(5):795−805. doi: 10.13225/j.cnki.jccs.2014.0478
    [9]
    余国锋,袁 亮,任 波,等. 底板突水灾害大数据预测预警平台[J]. 煤炭学报,2021,46(11):3502−3514. doi: 10.13225/j.cnki.jccs.2020.1788

    YU Guofeng,YUAN Liang,REN Bo,et al. Big data prediction and early warning platform for floor water inrush disaster[J]. Journal of China Coal Society,2021,46(11):3502−3514. doi: 10.13225/j.cnki.jccs.2020.1788
    [10]
    姜耀东,吕玉凯,赵毅鑫,等. 承压水上开采工作面底板破坏规律相似模拟试验[J]. 岩石力学与工程学报,2011,30(8):1571−1578.

    JIANG Yaodong,LYU Yukai,ZHAO Yixin,et al. Similar simulation test for breakage law of working face floor in coal mining above aquifer[J]. Chinese Journal of Rock Mechanics and Engineering,2011,30(8):1571−1578.
    [11]
    RUI Pinshu,ZHANG Wen,ZHONG Yiming,et al. High-performance cylindrical pendulum shaped triboelectric nanogenerators driven by water wave energy for full-automatic and self-powered wireless hydrological monitoring system[J]. Nano Energy,2020,74:104937. doi: 10.1016/j.nanoen.2020.104937
    [12]
    张东升,范钢伟,梁帅帅,等. 采动覆岩固液耦合三维无损监测系统与应用[J]. 采矿与安全工程学报,2019,36(6):1071−1078. doi: 10.13545/j.cnki.jmse.2019.06.001

    ZHANG Dongsheng,FAN Gangwei,LIANG Shuaishuai,et al. 3D non-destructive monitoring system forsolid-liquid coupling of mining-induced overburden and its application[J]. Journal of Mining & Safety Engineering,2019,36(6):1071−1078. doi: 10.13545/j.cnki.jmse.2019.06.001
    [13]
    贾 靖. 微震监测技术在煤矿防治水中的应用研究[J]. 煤炭与化工,2017,40(1):16−20.

    JIA Jing. Application research on microseismic monitoring technology in coalmine water control[J]. Coal and Chemical Industry,2017,40(1):16−20.
    [14]
    赵立松. 微震监测技术在大采深矿井防治水中的应用[J]. 煤炭与化工,2018,41(9):55−58,62. doi: 10.19286/j.cnki.cci.2018.09.018

    ZHAO Lisong. Application of microseismic monitoring technology in prevention and control of water in large mining deep mine[J]. Coal and Chemical Industry,2018,41(9):55−58,62. doi: 10.19286/j.cnki.cci.2018.09.018
    [15]
    孙运江,左建平,李玉宝,等. 邢东矿深部带压开采导水裂隙带微震监测及突水机制分析[J]. 岩土力学,2017,38(8):2335−2342. doi: 10.16285/j.rsm.2017.08.022

    SUN Yunjiang,ZUO Jianping,LI Yubao,et al. Micro-seismic monitoring on fractured zone and water inrush mechanism analysis of deep mining above aquifer in Xingdong coalmine[J]. Rock and Soil Mechanics,2017,38(8):2335−2342. doi: 10.16285/j.rsm.2017.08.022
    [16]
    靳德武, 赵春虎, 段建华, 等. 煤层底板水害三维监测与智能预警系统研究[J]. 煤炭学报, 2020, 45(6): 2256-2264.

    JIN Dewu, ZHAO Chunhu, DUAN Jianhua, et al. Research on 3D monitoring and intelligent early warning system for water hazard of coal seam floor[J]. 2020, 45(6): 2256-2264.
    [17]
    赵春虎. 孤岛工作面底板破坏深度微震测试与模拟分析[J]. 煤田地质与勘探,2019,47(4):110−116. doi: 10.3969/j.issn.1001-1986.2019.04.017

    ZHAO Chunhu. Microseismic test and numerical simulation analysis of floor failure depth of isolated coal mining face[J]. Coal Geology & Exploration,2019,47(4):110−116. doi: 10.3969/j.issn.1001-1986.2019.04.017
    [18]
    姜福兴,XUN Luo,杨淑华. 采场覆岩空间破裂与采动应力场的微震探测研究[J]. 岩土工程学报,2003(1):23−25. doi: 10.3321/j.issn:1000-4548.2003.01.004

    JIANG Fu xing,XUN Luo,YANG Shu hua. Study on microseismic monitoring for spatial structure of overlying strata and mining pressure field in longwall face[J]. Chinese Jounal of Geotechnical Engineering,2003(1):23−25. doi: 10.3321/j.issn:1000-4548.2003.01.004
    [19]
    姜福兴,叶根喜,王存文,等. 高精度微震监测技术在煤矿突水监测中的应用[J]. 岩石力学与工程学报,2008,27(9):1932−1938. doi: 10.3321/j.issn:1000-6915.2008.09.023

    JIANG Fuxing,YE Genxi,WANG Cunwen,et al. Application of high-precision microseismic monitoring technique to water inrush monitoring in coal mine[J]. Chinese Journal of Rock Mechanics and Engineering,2008,27(9):1932−1938. doi: 10.3321/j.issn:1000-6915.2008.09.023
    [20]
    朱宗奎,徐智敏,孙亚军. 矿井水害的临突监测指标及预警模型[J]. 煤矿安全,2014,45(1):170−172.

    ZHU Zongkui,XU Zhimin,SUN Yajun. Critical water inrush monitoring index and early-warning model of mine water disaster[J]. Safety in Coal Mines,2014,45(1):170−172.
    [21]
    龚承柱,李兰兰,柯晓玲,等. 基于multi-agent的煤矿水害演化模型[J]. 煤炭学报,2012,37(6):1005−1009.

    GONG Chengzhu,LI Lanlan,KE Xiaoling,et al. Evolutionary model of coal mine water hazards based on multi-agent simulation[J]. Journal of China Coal Society,2012,37(6):1005−1009.
    [22]
    EFTIM Z,PETRE L,ANDREA K. Automatic feature engineering for prediction of dangerous seismic activities in coal mines[J]. Annals of computer science and information systems,2016,8:245−248.
    [23]
    连会青,徐 斌,田振焘,等. 矿井水情监测与水害风险预警平台设计与实现[J]. 煤田地质与勘探,2021,49(1):198−207. doi: 10.3969/j.issn.1001-1986.2021.01.021

    LIAN Huiqing,XU Bin,TIAN Zhentao,et al. Design and implementation of mine water hazard monitoring and early warning platform[J]. Coal Geology & Exploration,2021,49(1):198−207. doi: 10.3969/j.issn.1001-1986.2021.01.021
    [24]
    杨忠东, 李玉宝, 贾 靖, 等. 一种矿井水害微震监测时空簇分析方法[P]. 中国: CN107203003A, 2017-09-26.

    YANG Zhongdong, LI Yubao, JIA Jing, et al. The invention relates to a time-space cluster analysis method for mine water disaster micro-seismic monitoring[P]. China : CN107203003A, 2017-09-26.
    [25]
    武 强,崔芳鹏,赵苏启,等. 矿井水害类型划分及主要特征分析[J]. 煤炭学报,2013,38(4):561−565.

    WU Qiang,CUI Fangpeng,ZHAO Suqi,et al. Type classification and main characteristics of mine water disasters[J]. Journal of China Coal Society,2013,38(4):561−565.
    [26]
    IGEL J H,ERMERT L A,FICHTNER A. Rapid finite-frequency microseismic noise source inversion at regional to global scales[J]. Geophysical Journal International,2021,227(1):169−183. doi: 10.1093/gji/ggab210
    [27]
    刘 超,唐春安,薛俊华,等. 煤岩体微震事件属性识别与标定综合分析方法[J]. 采矿与安全工程学报,2011,28(1):61−65. doi: 10.3969/j.issn.1673-3363.2011.01.012

    LIU Chao,TANG Chunan,XUE Junhua,et al. Comprehensive analysis method of identifying and calibrating micro-seismic events attributes in coal and rock mass[J]. Journal of Mining & Safety Engineering,2011,28(1):61−65. doi: 10.3969/j.issn.1673-3363.2011.01.012
    [28]
    XING Zeng, ZENG Xing, SONG Heng, et al. Isolated carbonate platform reservoir multiple grouped discrete fracture network modelling[J]. IOP Conference Series: Earth and Environmental Science, 2020, 546(4).
    [29]
    乔 伟,靳德武,王 皓,等. 基于云服务的煤矿水害监测大数据智能预警平台构建[J]. 煤炭学报,2020,45(7):2619−2627.

    QIAO Wei,JIN Dewu,WANG Hao,et al. Development of big data intelligent early warning platform for coal mine water hazard monitoring based on cloud service[J]. Journal of China Coal Society,2020,45(7):2619−2627.
    [30]
    王 皓,董书宁,姬亚东,等. 煤矿水害智能化防控平台架构及关键技术[J]. 煤炭学报,2022,47(2):883−892.

    WANG Hao,DONG Shuning,JI Yadong,et al. Key technology and platform development of intelligent prevention and control on coal mine water disaster[J]. Journal of China Coal Society,2022,47(2):883−892.
    [31]
    陈 结,杜俊生,蒲源源,等. 冲击地压“双驱动”智能预警架构与工程应用[J]. 煤炭学报,2022,47(2):791−806.

    CHEN Jie,DU Junsheng,PU Yuanyuan,et al. “Dual-driven” intelligent pre-warning framework of the coal burst disaster in coal mine and its engineering application[J]. Journal of China Coal Society,2022,47(2):791−806.
    [32]
    郑宗利,关惠军,苟想伟,等. 岩溶隧道突涌水预警体系的建立[J]. 灾害学,2022,37(1):41−46. doi: 10.3969/j.issn.1000-811X.2022.01.008

    ZHENG Zongli,GUAN Huijun,GOU Xiangwei,et al. Establishment of early-warning system for water inrush in karst tunnel[J]. Journal of Catastrophology,2022,37(1):41−46. doi: 10.3969/j.issn.1000-811X.2022.01.008
  • Related Articles

    [1]DENG Ze, ZHAO Qun, FAN Liyong, HUANG Daojun, DING Rong, CAO Yimin, LI Peijie, GAO Xiangdong. Key controlling factors of coal-rock gas of Benxi Formation in Ordos Basin and its practical significance[J]. COAL SCIENCE AND TECHNOLOGY, 2025, 53(S1): 233-251. DOI: 10.12438/cst.2025-0236
    [2]WANG Zhonghua, CAO Jianjun. Study on main control factors of pressure relief of deep and long distance coal seam group and optimization method of initial mining[J]. COAL SCIENCE AND TECHNOLOGY, 2021, 49(8): 154-161.
    [3]ZHOU Peiming, FU Wei, DONG Lei. Study on distribution features and main control factors of coalbed methane in Wulunshan Minefield[J]. COAL SCIENCE AND TECHNOLOGY, 2018, (12).
    [4]ZHANG Xiao-dong ZHAO Jia-pan ZHANG Shuo, . Study on Main Control Factors of Gas Drainage in Coalbed Methane Well of Tunliu Minefield[J]. COAL SCIENCE AND TECHNOLOGY, 2014, (6).
    [5]LI Yong TANG Da-zhen XU Hao MENG Shang-zhi QU Ying-jie MENG Yan-jun, . Study on Main Control Factors Affecting Gas Content of Coal Seams in Liulin Mining Area[J]. COAL SCIENCE AND TECHNOLOGY, 2014, (5).
    [6]HAO Fu-kun LI Hai-tao ZHOU Kun WANG Xin, . Study on Numerical Simulation of Main Control Factors for Energy Distribution of Mine Pressure Bump[J]. COAL SCIENCE AND TECHNOLOGY, 2014, (4).
    [7]MA Guo-long ZHANG Qing-hua ZHAO Bin, . Analysis on Major Control Factors of Coal and Gas Outburst in Sihe Mine and Prevention Countermeasures[J]. COAL SCIENCE AND TECHNOLOGY, 2014, (3).
    [8]ZHANG Yu-zhu YAN Jiang-wei ZHANG Zi-min WANG Wei, . Study on Distribution Law and Main Control Factors of Gas Outburst in Pingmei No.12 Mine[J]. COAL SCIENCE AND TECHNOLOGY, 2013, (10).
    [9]Study on Development Features and Major Control Factors of Ordovician Limestone Karst in Gujao Mining Area[J]. COAL SCIENCE AND TECHNOLOGY, 2013, (2).
    [10]Analysis on Main Control Factors of Strip Mining in Multi Seams Based on Normal Test Design[J]. COAL SCIENCE AND TECHNOLOGY, 2012, (3).
  • Cited by

    Periodical cited type(12)

    1. 刘忠海. 煤化工中的焦化废水污染控制原理与技术研究. 中国石油和化工标准与质量. 2025(04): 138-140 .
    2. 李泽乙,廖常盛,柴云,王庆宏,詹亚力,陈春茂,陈发源. 焦化废水生化尾水特征及其深度处理技术进展. 工业水处理. 2024(03): 10-23 .
    3. 余梦春. 焦化废水工艺流程及深度处理工艺优化分析. 山西化工. 2024(05): 224-226 .
    4. 吴震,陈飞勇,刘汝鹏,卢永峰,孙翠珍,罗从伟. 磁介质混凝沉淀技术的现状及探索. 净水技术. 2023(02): 23-38 .
    5. 郭娟,米玉辉,陈佳琪,武励鹏,陈旭东. 焦化工业园区中水深度处理及零排放实践. 当代化工研究. 2023(04): 77-79 .
    6. 李竞赢,刘启蒙,杨明慧. 矿井水水化学特征及资源化利用研究——以张集煤矿为例. 煤炭科学技术. 2023(04): 254-263 . 本站查看
    7. 唐海龙,樊玉萍,马晓敏,董宪姝,常明. 基于撞击流调控的煤泥水混合过程强化研究. 煤炭科学技术. 2023(10): 323-335 . 本站查看
    8. 章丽萍,姚瑞涵,赵晓曦,崔行健,段梦楠,王丽芳,陈加乐,马泽钰. CaCl_2+除氟药剂两段法处理焦化浓盐水中氟化物研究. 煤炭科学技术. 2023(11): 255-263 . 本站查看
    9. 张志超,牛涛,于豹,石伟. 焦化废水处理工程实例分析. 工业水处理. 2022(07): 179-185 .
    10. 张国凯,王艺霏,李亚男,冯卓,武亚宁,杨昊,宋子恒. Fe(Ⅵ)/H_2O_2体系对焦化废水中有机物和煤颗粒物的协同处理研究. 煤炭科学技术. 2022(07): 277-283 . 本站查看
    11. 郑剑平,刘凯林,薛继峰,李高辉,张立峰,涂亚楠. 吡啶对褐煤水煤浆流变性的影响规律研究. 煤炭科学技术. 2022(08): 270-276 . 本站查看
    12. 刘文礼,耿鹏岳,卓启明,马金虎,李佳. 脱硫废水固化体力学特性研究. 煤炭科学技术. 2022(11): 230-235 . 本站查看

    Other cited types(3)

Catalog

    Article views (107) PDF downloads (41) Cited by(15)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return