Advance Search

SI Lei,LI Jiahao,TAN Chao,et al. Study on load current characteristics of scraper conveyor under vertical impact[J]. Coal Science and Technology,2023,51(2):400−411

. DOI: 10.13199/j.cnki.cst.2021-1140
Citation:

SI Lei,LI Jiahao,TAN Chao,et al. Study on load current characteristics of scraper conveyor under vertical impact[J]. Coal Science and Technology,2023,51(2):400−411

. DOI: 10.13199/j.cnki.cst.2021-1140

Study on load current characteristics of scraper conveyor under vertical impact

Funds: 

National Natural Science Foundation of China (52074271); Jiangsu Province University Superior Discipline Construction Project (Su Government Office [2018]87)

More Information
  • Received Date: April 30, 2022
  • Available Online: April 20, 2023
  • During the operation of the mine scraper conveyor, it is easy to be affected by the uneven movement of hydraulic support and the uneven cutting bottom of shearer, bearing various types of impact, of which the impact in the vertical direction is the most obvious. This phenomenon will lead to serious wear of the transmission system and unbalanced power of the driving motor. In this article, the formation mechanism of vertical impact of scraper conveyor is studied and the running resistance of the scraper conveyor under different vertical impact effects is calculated. The vertical impact simulation model of the scraper conveyor transmission system is established. The load conditions of scraper conveyor under different working conditions of middle slot clearance, convex and concave of middle slot are simulated and analyzed. The simulation results show that when the middle slot clearance increases, the impact between the middle groove and the middle plate will be stronger, and the impact on the drive system of the scraper conveyor will be more obvious. The peak value of load current produced by vertical impact is positively correlated with the degree of concave or convex bending of the middle groove. The maximum bending angle of adjacent middle slots is the main factor determining the sudden peak value of impact load and the load increment after impact stability of scraper conveyor. The impact caused by the convex and concave bending of the middle groove has a maximum impact on the running resistance of about 12%, which is the main factor affecting the motor power imbalance of the drive system. In the coal mining face, the impact load monitoring platform of scraper conveyor is built, and some impact load monitoring experiments under different vertical bending angles are carried out. The comparison results show that different degrees of vertical impact make the load current fluctuate obviously, and in a short time, the peak value of the impact current can reach 1.5 times of the normal working current, causing serious damage to the chain, motor and other parts of the scraper conveyor. The change trend of the motor current curve after impact is basically consistent with the simulation curve, and the average absolute error range is about 0.435A ~ 1.342A, which verifies the correctness and rationality of the vertical impact simulation model of the scraper conveyor. The research results provide a theoretical basis for improving the intelligent control level of scraper conveyor and ensuring the load stability and power balance of coal mine transportation equipment, so as to reduce the transportation cost of fully mechanized mining face and prolong the service life of transportation equipment.

  • [1]
    王国法,徐亚军,张金虎,等. 煤矿智能化开采新进展[J]. 煤炭科学技术,2021,49(1):1−10. doi: 10.13199/j.cnki.cst.2021.01.001

    WANG Guofa,XU Yajun,ZHANG Jinhu,et al. New development of intelligent mining in coal mines[J]. Coal Science and Technology,2021,49(1):1−10. doi: 10.13199/j.cnki.cst.2021.01.001
    [2]
    王国法,庞义辉,任怀伟. 煤矿智能化开采模式与技术路径[J]. 采矿与岩层控制工程学报,2020,2(1):5−19.

    WANG Guofa,PANG Yihui,REN Huaiwei. Intelligent coal mining pattern and technological path[J]. Journal of Mining and Strata Control Engineering,2020,2(1):5−19.
    [3]
    王国法,刘 峰,孟祥军,等. 煤矿智能化( 初级阶段) 研究与实践[J]. 煤炭科学技术,2019,47(8):1−34.

    WANG Guofa,LIU Feng,MENG Xiangjun,et al. Research and practice on intelligent coal mine construction (primary state)[J]. Coal Science and Technology,2019,47(8):1−34.
    [4]
    王国法,刘 峰,庞义辉. 煤矿智能: 煤炭工业高质量发展的核心技术支撑[J]. 煤炭学报,2019,44(2):349−357.

    WANG Guofa,LIU Feng,PANG Yihui. Coal mine intelligence-core technical support for high-quality development of coal industry[J]. Journal of China Coal Society,2019,44(2):349−357.
    [5]
    史志远. 严酷工况下刮板输送机中部槽磨损规律[J]. 煤炭学报,2017,42(S2):541−546. doi: 10.13225/j.cnki.jccs.2017.0116

    SHI Zhiyuan. Wear law of middle trough of scraper conveyor under severe conditions[J]. Journal of China Coal Society,2017,42(S2):541−546. doi: 10.13225/j.cnki.jccs.2017.0116
    [6]
    XIA Rui,WANG Xuewen,LI Bo,et al. The prediction of wear on a scraper conveyor chute affected by different factors based on the discrete element method[J]. Proceedings of the Institution of Mechanical Engineers, Part C-Journal of Mechanical Engineering Science,2019,233(17):203−210.
    [7]
    姚艳萍,高志鹏,张善震. 链轮参数对刮板输送机中部槽冲击磨损的影响研究[J]. 现代制造工程,2021,489(6):130−134. doi: 10.16731/j.cnki.1671-3133.2021.06.020

    YAO Yanping,GAO Zhipeng,ZHANG Shanzhen. Study on the influence of sprocket parameters on the impact wear of the middle groove of scraper conveyor[J]. Modern Manufacturing Engineering,2021,489(6):130−134. doi: 10.16731/j.cnki.1671-3133.2021.06.020
    [8]
    毛 君,师建国,张东升. 重型刮板输送机动力建模与仿真[J]. 煤炭学报,2008,33(1):107−110. doi: 10.13225/j.cnki.jccs.2008.01.016

    MAO Jun,SHI Jianguo,ZHANG Dongsheng. Dynamic modeling and Simulation of heavy scraper conveyor[J]. Journal of China Coal Society,2008,33(1):107−110. doi: 10.13225/j.cnki.jccs.2008.01.016
    [9]
    SHI Jianguo,MAO Jun,WEI Xiaohua. Research on dynamic tension control theory for heavy scraper conveyor[J]. Applied Mechanics and Materials,2010,34-35:1956−1960. doi: 10.4028/www.scientific.net/AMM.34-35.1956
    [10]
    WANG Haijian,ZHANG Qiang,XIE Fei. Dynamic tension test and intelligent coordinated control system of a heavy scraper conveyor[J]. IET Science, Measurement & Technology,2017,11(7):871−877.
    [11]
    张 行,江 帆,贾晨曦,等. 刮板输送机链传动系统受力特性研究[J]. 煤矿机械,2021,42(8):53−56. doi: 10.13436/j.mkjx.202108016

    ZHANG Xing,JIANG Fan,JIA Chenxi,et al. Research on force characteristics of chain drove system for scraper conveyor[J]. Coal Mine Machinery,2021,42(8):53−56. doi: 10.13436/j.mkjx.202108016
    [12]
    李云峰,李云聪. 矿用刮板输送机中部槽磨损的离散元法分析与研究[J]. 矿业研究与开发,2021,41(1):169−173. doi: 10.13827/j.cnki.kyyk.2021.01.030

    LI Yunfeng,LI Yuncong. Disctete element analysis and research on the abrasion of the middle groove in scraper conveyor[J]. Mining Research and Development,2021,41(1):169−173. doi: 10.13827/j.cnki.kyyk.2021.01.030
    [13]
    王旭峰,梁 影. 刮板输送机动张力特性分析与仿真[J]. 煤炭科学技术,2019,47(S2):59−63.

    WANG Xufeng,LIANG Ying. Analysis and simulation of dynamic tension characteristics of scraper conveyor[J]. Coal Science and Technology,2019,47(S2):59−63.
    [14]
    候德安. 矿用刮板输送机链传动系统稳定性分析与仿真[J]. 机械工程与自动化,2021,224(1):57−59. doi: 10.3969/j.issn.1672-6413.2021.01.020

    HOU Dean. Analysis and simulation of stability of mining scraper conveyor chain drive system[J]. Mechanical Engineering & Automation,2021,224(1):57−59. doi: 10.3969/j.issn.1672-6413.2021.01.020
    [15]
    王继文. 不同工况下刮板输送机启动时的动力学特性研究[J]. 机械管理开发,2019,34(9):143−145. doi: 10.16525/j.cnki.cn14-1134/th.2019.09.063

    WANG Jiwen. Study on dynamic characteristics of scraper conveyor under different working conditions[J]. Mechanical Management and Development,2019,34(9):143−145. doi: 10.16525/j.cnki.cn14-1134/th.2019.09.063
    [16]
    焦宏章,杨兆建,王淑平. 刮板输送机链轮传动系统接触动力学仿真分析[J]. 煤炭学报,2012,37(S2):494−498. doi: 10.13225/j.cnki.jccs.2012.s2.028

    JIAO Hongzhang,YANG Zhaojian,WANG Shuping. Contact dynamics simulation analysis of sprocket drive system of scraper conveyor[J]. Journal of China Coal Society,2012,37(S2):494−498. doi: 10.13225/j.cnki.jccs.2012.s2.028
    [17]
    刘 婷. 刮板输送机S弯区域水平弯曲角优化关键技术研究[D]. 徐州: 中国矿业大学, 2019.

    LIU Ting. Research on key technology of horizontal bending angle optimization in S-bend area of scraper conveyor [D]. Xuzhou: China University of mining and technology, 2019.
    [18]
    王季鑫,李军霞,王 沅. 刮板输送机链传动系统波动特性分析[J]. 机械传动,2019,43(9):118−122. doi: 10.16578/j.issn.1004.2539.2019.09.020

    WANG Jixin,LI Junxia,WANG Yuan. Fluctuation characteristic analysis on scraper chain transmission system[J]. Journal of Mechanical Transmission,2019,43(9):118−122. doi: 10.16578/j.issn.1004.2539.2019.09.020
    [19]
    王洋洋. 刮板输送机永磁直驱系统机电耦合模型研究[D]. 徐州: 中国矿业大学, 2018.

    WANG Yangyang. Research on electromechanical coupling model of permanent magnet direct drive system of scraper conveyor [D]. Xuzhou: China University of mining and technology, 2018.
    [20]
    王洋洋,鲍久圣,葛世荣,等. 刮板输送机永磁直驱系统机-电耦合模型仿真与试验[J]. 煤炭学报,2020,45(6):2127−2139. doi: 10.13225/j.cnki.jccs.2019.1638

    WANG Yangyang,BAO Jiusheng,GE Shirong,et al. Simulation and experimental study on electromechanical coupling model of permanent magnet direct drive system for scraper conveyor[J]. Journal of China Coal Society,2020,45(6):2127−2139. doi: 10.13225/j.cnki.jccs.2019.1638
  • Related Articles

    [1]XU Xiaotao, NING Shuzheng, SUN Jie, WANG Huayao, LI Baowan, ZHANG Jianqiang, DING Lian. Geochemical characteristics and paleoenvironmental significance of the Xishanyao Formation coal in the eastern Junggar Basin[J]. COAL SCIENCE AND TECHNOLOGY, 2024, 52(S1): 153-163. DOI: 10.12438/cst.2023-0640
    [2]MA Fenghua, WANG Donggang, HE Qingzhi, MA Ruiyun, WANG Cheng, YANG Xiaobing. Geochemistry characteristics of rare earth elements in the permo-carboniferous Taiyuan Formation coal in Ordos Basin—Taking Ningdong coalfield as an example[J]. COAL SCIENCE AND TECHNOLOGY, 2024, 52(12): 239-246. DOI: 10.12438/cst.2023-1726
    [3]XING Yanyang, DING Hua, BAI Xiangfei, HE Jin. Research progress on the distribution and occurrence characteristics of rare earth elements in coal and coal-fired products[J]. COAL SCIENCE AND TECHNOLOGY, 2024, 52(3): 269-282. DOI: 10.12438/cst.2023-1165
    [4]LI Xiang, LI Wu. Geochemical characteristics of trace elements in Zhuzhuang Coal Mine of Huaibei coalfield[J]. COAL SCIENCE AND TECHNOLOGY, 2023, 51(8): 178-191. DOI: 10.13199/j.cnki.cst.2022-0417
    [5]GAO Di, GUO Huiling, WANG Jiahui. Geochemical characteristics and sedimentary environment of coal during Middle Jurassic in Yima Basin[J]. COAL SCIENCE AND TECHNOLOGY, 2023, 51(5): 174-183. DOI: 10.13199/j.cnki.cst.2021-1395
    [6]YANG Chengwei, DING Hua, BAI Xiangfei, TANG Yuegang, HE Jin, YUAN Dongying. Geochemical research status of sodium element in high-sodium coal in Xinjiang[J]. COAL SCIENCE AND TECHNOLOGY, 2022, 50(10): 169-178.
    [7]QIN Shenjun, XU Fei, CUI Li, WANG Jinxi, LI Shenyong, ZHAO Zesen, XIAO Lin, GUO Yanxia, ZHAO Cunliang. Geochemistry characteristics and resource utilization of strategically critical trace elements from coal-related resources[J]. COAL SCIENCE AND TECHNOLOGY, 2022, 50(3): 1-38.
    [8]HE Jing, HUANG Tao, FENG Shuo, TIAN Jijun, YANG Bo, HAO Huili. Geochemical characteristics of coal and sedimentary environment significance in Xishanyao Formation of Santanghu Coalfield[J]. COAL SCIENCE AND TECHNOLOGY, 2020, 48(5).
    [9]LIU Yuyang, FAN Jingsen, WANG Jinxi, YANG Zhen, FU Zhiheng. Study on geochemical characteristics of rare earth elements from coal in Ningwu Coalfield[J]. COAL SCIENCE AND TECHNOLOGY, 2020, 48(4).
    [10]LU Qingfeng WU Shihao QIN Shenjun BO Penghui GAO Kang, . Geochemical features of associated elements in coal from Panxian Minefield of Guizhou[J]. COAL SCIENCE AND TECHNOLOGY, 2017, (10).
  • Cited by

    Periodical cited type(26)

    1. 陈浮, 夏依, 邹铭, 巩人杰, 骆占斌. “一带一路”共建国家矿区生态修复碳汇潜力评估. 煤炭学报. 2025(06)
    2. 余伟健,孙梅霖,杜锦滢,陈国梁,王闯. “双碳”目标下矿山生态修复及减排增汇途径研究进展. 矿业安全与环保. 2025(01): 38-46 .
    3. 郭玉良,刘世奇,桑树勋,陈伟伟,张芮,王庆刚,曹银南,滕鸿博,贠宇春,丁映红. 淮南典型资源枯竭矿区生态系统碳增汇修复模式研究. 西安建筑科技大学学报(自然科学版). 2025(01): 50-59 .
    4. 任昱,魏春光. 生态环境修复对鄂尔多斯黄河流域露天矿固碳增汇的影响机制研究. 煤矿现代化. 2025(04): 1-5 .
    5. 陈浮,华子宜,郭维红,朱燕峰,杨永均,马静. 美丽中国视域下矿山生态修复:逻辑演进、科学内涵和行动方略. 化工矿物与加工. 2024(02): 1-11 .
    6. 李健明,康雨欣,蒋福祯,宋明丹,祁凯斌,卢素锦,李正鹏. 基于Meta分析的煤矿区植被恢复对土壤有机碳储量的影响. 环境科学. 2024(03): 1629-1643 .
    7. 马静,华子宜,程彦郡,朱燕峰,杨永均,陈浮. 植被恢复类型对露采矿山复垦土壤丰富和稀有微生物类群的影响. 煤炭科学技术. 2024(02): 363-377 . 本站查看
    8. 张宇昂,李亚桐,杜忠毓,祁新华,侯红,陈光才. 矿区受损生态系统修复与碳汇潜力的文献计量研究. 林业科学研究. 2024(02): 144-155 .
    9. 胡振琪,张帆,张子璇,孙煌,钟安亚. 2023年土地科学研究重点进展评述及2024年展望——土地工程与信息技术分报告. 中国土地科学. 2024(03): 116-126 .
    10. 王董董,肖礼,毕银丽,聂文杰,张可. 神东矿区接种AMF对植物-土壤生态化学计量及养分回收的影响. 煤炭科学技术. 2024(05): 354-363 . 本站查看
    11. 张建华,周晓阳,郭旭婷,杜鑫鑫,安利,秦浩,刘勇,张红,徐龙超. 露天煤矿人工林植被碳密度分配格局及其影响因素. 干旱区研究. 2024(06): 974-983 .
    12. 李晓凯,张鹏程,孙梦雅,张炫,周沈立. 露天矿山生态修复后碳汇调查及计算方法研究. 环境科学与管理. 2024(08): 16-21 .
    13. 葛世荣,刘淑琴,樊静丽,赵毅鑫,滕腾. 低碳化现代煤基能源开发关键技术体系. 煤炭学报. 2024(07): 2949-2972 .
    14. 张鸽,张弛,林星杰,苗雨,李昉泽,庞治坤,谭海伟,信心. 双碳背景下铜尾矿综合利用方向探讨. 矿冶. 2024(04): 600-606 .
    15. 刘江,司洪涛,李成,朱冬雪,冯樊,严有龙,王科,王琛,毛铮,徐铭泽. 西南地区露天矿山修复对植被与土壤固碳效应的影响. 安徽林业科技. 2024(04): 15-19+30 .
    16. 杨岳,赵艳宁,樊如月,张雅楠,刘丽,丁勇. 草原露天矿山生态恢复对土壤有机碳的影响研究综述. 中国草地学报. 2024(09): 129-138 .
    17. 陈浮,朱燕峰,骆占斌,常媛媛,杨永均,马静. 黄土高原露天煤矿复垦土壤-植被系统恢复力及协同/权衡关系. 煤炭学报. 2024(11): 4590-4602 .
    18. 刘江,严有龙,马磊,李成,应凌霄,朱冬雪,王琛,余西游,王科,司洪涛,钟小华. 大型露天矿区生态修复植被碳储量研究——以重庆铜锣山为例. 资源环境与工程. 2024(06): 754-761 .
    19. 陈珲,崔一涵,汪海明,林建秋,吴红雷,彭景林,张军军,翟远征. 矿山生态修复及其固碳潜力研究进展. 地球科学. 2024(12): 4594-4607 .
    20. 顾清华,李学现,卢才武,阮顺领,江松. “双碳”背景下露天矿智能化建设新模式的技术路径. 金属矿山. 2023(05): 1-13 .
    21. 陈浮,朱燕峰,马静,杨永均,尤云楠,王丽萍. 东部平原采煤沉陷区降污固碳协同修复机制与关键技术. 煤炭学报. 2023(07): 2836-2849 .
    22. 李贵,陈瑞,刘振华,吴敏,童琪,刘森,谢沛源,童方平. 废弃矿区不同比例柏木混交林修复效应研究. 西部林业科学. 2023(05): 55-63 .
    23. 何辰,张庆梅. 碳中和愿景下甘肃省煤炭工业高质量发展路径选择. 煤炭加工与综合利用. 2023(10): 74-78 .
    24. 黄庆成,杨贺舒,佘乾仲,袁功林. 广西矿区碳汇核算及其价值分析. 环境生态学. 2023(12): 61-66 .
    25. 雷少刚,王维忠,李园园,杨星晨,周叶丽,段雅婷,赵小同,程伟. 北方大型露天矿区土壤有机碳库扰动与恢复研究. 煤炭科学技术. 2023(12): 100-109 . 本站查看
    26. 包维斌,叶红刚. 陇东黄土高原矿山地质环境影响评价及修复技术:以蒲河流域A废弃平硐采砂矿山为例. 能源与节能. 2023(12): 92-96 .

    Other cited types(15)

Catalog

    Article views (89) PDF downloads (40) Cited by(41)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return