Citation: | XU Xiaotao,NING Shuzheng,SUN Jie,et al. Geochemical characteristics and paleoenvironmental significance of the Xishanyao Formation coal in the eastern Junggar Basin[J]. Coal Science and Technology,2024,52(S1):153−163. DOI: 10.12438/cst.2023-0640 |
The Junggar Basin is an important coal-bearing basin in northwestern China. The coalfield in the east of the Junggar basin is an important part of the large Xinjiang coal base, and contains rich coal resources. In this study, we undertook a multi-proxy study evaluating trace elements, macerals and vitrinite maximum reflectance from coal seams B0, B1 and B2 of the middle Jurassic Xishanyao Formation to characterize paleoredox and paleosalinity conditions of coal-forming swamp and atmospheric oxygen level and paleoclimate during coal-forming period in the eastern Junggar Basin. 220 coal samples were selected from coal seams B0, B1 and B2 in order to determine trace elements. Moreover, macerals and vitrinite maximum reflectance of 16 coal samples was investigated. Compared with average values for world low-rank coals, the coal seams B0, B1 and B2 of the middle Jurassic Xishanyao Formation in the eastern Junggar Basin are slightly enriched in Sr, in addition, the coal seam B0 is also slightly enriched in Co. The analysis of Ni/Co-V/Cr and Ni/Co-Mo diagrams indicates that swamp was in oxic and dysoxic condition, which infers that the water in swamp has strong activity and high free oxygen content. According to B/Ga ratio analysis, the paleosalinity of swamp gradually increases from coal seam B0 to coal seam B1 and then to coal seam B2. The high paleosalinity of swamp during coal-forming period of coal seam B2 may be caused by an increase in the evaporation of water, which also indicates that the paleoclimate was relatively dry and hot during this period. The Sr/Cu ratios in coal seams B0, B1 and B2 reveal that the paleoclimate experienced a gradual transition from relatively warm and humid condition to relatively dry and hot condition from bottom to top during the Xishanyao Formation coal-forming period. The inertinite content varies from 40.4% to 57.2% with an average of 48.5% in coal seams B0, B1, and B2. Inferred atmospheric oxygen concentration in the middle Jurassic, as estimated from inertinite contents, were ~27.7%, which is much higher than the minimum required for sustained combustion.
[1] |
DAI S F,BECHTEL A,EBLE C F,et al. Recognition of peat depositional environments in coal:A review[J]. International Journal of Coal Geology,2020,219:103383. doi: 10.1016/j.coal.2019.103383
|
[2] |
邵龙义,徐小涛,王 帅,等. 中国含煤岩系古地理及古环境演化研究进展[J]. 古地理学报,2021,23(1):19−38. doi: 10.7605/gdlxb.2021.01.002
SHAO Longyi,XU Xiaotao,WANG Shuai,et al. Research progress of palaeogeography and palaeoenvironmental evolution of coal-bearing series in China[J]. Journal of Palaeogeography,2021,23(1):19−38. doi: 10.7605/gdlxb.2021.01.002
|
[3] |
RIMMER S M. Geochemical paleoredox indicators in Devonian–Mississippian black shales,Central Appalachian Basin (USA)[J]. Chemical Geology,2004,206:373−391. doi: 10.1016/j.chemgeo.2003.12.029
|
[4] |
何 静,黄 涛,冯 烁,等. 三塘湖煤田西山窑组煤地球化学特征及沉积环境意义[J]. 煤炭科学技术,2020,48(5):173−181.
HE Jing,HUANG Tao,FENG Shuo,et al. Geochemical characteristics of coal and sedimentary environment significance in Xishanyao Formation of Santanghu Coalfield[J]. Coal Science and Technology,2020,48(5):173−181.
|
[5] |
WANG D D,ZHANG G C,LI Z X,et al. The development characteristics and distribution predictions of the Paleogene coal-measure source rock in the Qiongdongnan Basin,northern South China Sea[J]. Acta Geologica Sinica(English Edition),2021,95(1):105−120. doi: 10.1111/1755-6724.14625
|
[6] |
WANG L J,LV D W,HOWER J C,et al. Geochemical characteristics and paleoclimate implication of Middle Jurassic coal in the Ordos Basin,China[J]. Ore Geology Reviews,2022,144:104848. doi: 10.1016/j.oregeorev.2022.104848
|
[7] |
ALGEO T J. Can marine anoxic events draw down the trace element inventory of seawater?[J]. Geology,2004,32:1057−1060.
|
[8] |
WEI W,ALGEO T J. Elemental proxies for paleosalinity analysis of ancient shales and mudrocks[J]. Geochimica et Cosmochimica Acta,2019,287:341−366.
|
[9] |
SCOTT A C,GLASSPOOL I J. The diversification of Paleozoic fire systems and fluctuations in atmospheric oxygen concentration[J]. PNAS,2006,103(29):10861−10865. doi: 10.1073/pnas.0604090103
|
[10] |
GLASSPOOL I J,SCOTT A C,Waltham D,et al. The impact of fire on the Late Paleozoic Earth system[J]. Frontiers in Plant Science,2015,6:756.
|
[11] |
潘树仁,潘海洋,谢志清,等. 新时代背景下煤炭绿色勘查技术体系研究[J]. 中国煤炭地质,2018,30(6):10−13. doi: 10.3969/j.issn.1674-1803.2018.06.02
PAN Shuren,PAN Haiyang,XIE Zhiqing,et al. Study on coal green exploration technological system under new era background[J]. Coal Geology of China,2018,30(6):10−13. doi: 10.3969/j.issn.1674-1803.2018.06.02
|
[12] |
王 佟,冯 帆,江 涛,等. 新疆准噶尔含煤盆地基本构造格架与认识[J]. 地质学报,2016,90(4):628−638. doi: 10.3969/j.issn.0001-5717.2016.04.003
WANG Tong,FENG Fan,JIANG Tao,et al. Fundamental structural framwork and cognition of Junggar coal basin,Xinjiang[J]. Acta Geologica Sinica,2016,90(4):628−638. doi: 10.3969/j.issn.0001-5717.2016.04.003
|
[13] |
彭苏萍,张 博,王 佟. 我国煤炭资源“井”字形分布特征与可持续发展战略[J]. 中国工程科学,2015,17(9):29−35. doi: 10.3969/j.issn.1009-1742.2015.09.006
PENG Suping,ZHANG Bo,WANG Tong. China’s coal resources:octothorpe shaped distribution characteristics and sustainable development strategies[J]. Engineering Sciences,2015,17(9):29−35. doi: 10.3969/j.issn.1009-1742.2015.09.006
|
[14] |
何志平,邵龙义,康永尚,等. 准噶尔盆地侏罗系八道湾组聚煤作用控制因素分析[J]. 沉积学报,2004,22(3):449−454.
HE Zhiping,SHAO Longyi,KANG Shangyong,et al. Analysis on controls of the coal accumulation in the Jurassic Badaowan Formation,Junggar Basin[J]. Acta Sedimentologica Sinica,2004,22(3):449−454.
|
[15] |
李 鑫,庄新国,周继兵,等. 准东煤田中部矿区西山窑组巨厚煤层煤相分析[J]. 地质科技情报,2010,29(5):84−88.
LI Xin,ZHUANG Xinguo,ZHOU Jibing,et al. Coal facies analysis of thick coal seam of middle Jurassic Xishanyao Formation in the middle part of eastern Junggar coal field,Xinjiang[J]. Geological Science and Technology Information,2010,29(5):84−88.
|
[16] |
WANG T,SHAO L Y,TIAN Y,et al. Sequence stratigraphy of the Jurassic coal measures in northwestern China[J]. Acta Geologica Sinica (English Edition),2012,86(3):769−778. doi: 10.1111/j.1755-6724.2012.00702.x
|
[17] |
陈业全,王伟锋. 准噶尔盆地构造演化与油气成藏特征[J]. 石油大学学报(自然科学版),2004,28(3):4−9.
CHEN Yequan,WANG Weifeng. Tectonic evolution and hydrocarbon accumulation characteristics of the Junggar Basin[J]. Journal of the University of Petroleum,China,2004,28(3):4−9.
|
[18] |
王 佟,田 野,邵龙义,等. 新疆准噶尔盆地早–中侏罗世层序:古地理及聚煤特征[J]. 煤炭学报,2013,38(1):114−121.
WANG Tong,TIAN Ye,SHAO Longyi,et al. Sequence-paleogeography and coal accumulation of the early and middle Jurassic in the Junggar Basin[J]. Journal of China Coal Society,2013,38(1):114−121.
|
[19] |
胡 平,徐 恒,李新兵,等. 准噶尔盆地东部侏罗纪含煤岩系沉积环境及基准面旋回划分[J]. 沉积学报,2006,24(3):378−386. doi: 10.3969/j.issn.1000-0550.2006.03.009
HU Ping,XU Heng,LI Xinbing,et al. Sedimentary environments and the stratigraphic base-level cycle division of Jurassic coal measures in the east of Junggar Basin[J]. Acta Sedimentologica Sinica,2006,24(3):378−386. doi: 10.3969/j.issn.1000-0550.2006.03.009
|
[20] |
张 磊,何登发,易泽军,等. 克拉美丽山与大井坳陷的构造关系:兼论石炭纪构造−沉积格局[J]. 石油勘探与开发,2020,47(1):29−44.
ZHANG Lei,HE Dengfa,YI Zejun,et al. Tectonic relationship between the Kelameili range and the Dajing depression:Insights into the Carboniferous tectonic-sedimentary framework[J]. Petroleum Exploration and Development,2020,47(1):29−44.
|
[21] |
何登发,张 磊,吴松涛,等. 准噶尔盆地构造演化阶段及其特征[J]. 石油与天然气地质,2018,39(5):845−861. doi: 10.11743/ogg20180501
HE Dengfa,ZHANG Lei,WU Songtao,et al. Tectonic evolution stages and features of the Junggar Basin[J]. Oil& Gas Geology,2018,39(5):845−861. doi: 10.11743/ogg20180501
|
[22] |
郑孟林,田爱军,杨彤远,等. 准噶尔盆地东部地区构造演化与油气聚集[J]. 石油与天然气地质,2018,39(5):907−917. doi: 10.11743/ogg20180506
ZHENG Menglin,TIAN Aijun,YANG Tongyuan,et al. Structural evolution and hydrocarbon accumulation in the eastern Junggar Basin[J]. Oil& Gas Geology,2018,39(5):907−917. doi: 10.11743/ogg20180506
|
[23] |
DAI S F,SEREDIN V V,WARD C R,et al. Enrichment of U-Se-Mo-Re-V in coals preserved within marine carbonate successions:geochemical and mineralogical data from the Late Permian Guiding Coalfield,Guizhou,China[J]. Mineralium Deposita,2015,50(2):159−186. doi: 10.1007/s00126-014-0528-1
|
[24] |
KETRIS M P,YUDOVICH Y E. Estimations of Clarkes for Carbonaceous biolithes:World averages for trace element contents in black shales and coals[J]. International Journal of Coal Geology,2009,78:135−148. doi: 10.1016/j.coal.2009.01.002
|
[25] |
TYSON R V,PEARSON T H. Modern and ancient continental shelf anoxia:an overview. In Modern and Ancient Continental Shelf Anoxia (eds. R V Tyson and T H Pearson). Geological Society of London Special Publications,1991,58,pp. 1−24.
|
[26] |
TRIBOVILLARD N,ALGEO T J,LYONS T,et al. Trace metals as paleoredox and paleoproductivity proxies:An update[J]. Chemical Geology,2006,232:12−32. doi: 10.1016/j.chemgeo.2006.02.012
|
[27] |
ALGEO T J,LI C. Redox classification and calibration of redox thresholds in sedimentary systems[J]. Geochimica et Cosmochimica Acta,2020,287:8−26. doi: 10.1016/j.gca.2020.01.055
|
[28] |
常华进,储雪蕾,冯连君,等. 氧化还原敏感微量元素对古海洋沉积环境的指示意义[J]. 地质论评,2009,55(1):91−99. doi: 10.3321/j.issn:0371-5736.2009.01.011
CHANG Huajin,CHU Xuelei,FENG Lianjun,et al. Redox sensitive trace elements as paleoenvironments proxies[J]. Geological Review,2009,55(1):91−99. doi: 10.3321/j.issn:0371-5736.2009.01.011
|
[29] |
TAYLOR S R,MCLENNAN S M. The continental crust:Its composition and evolution[M]. Oxford:Blackwell Scientific Publications,1985:1−312.
|
[30] |
ALGEO T J,TRIBOVILLARD N. Environmental analysis of paleoceanographic systems based on molybdenum-uranium covariation. Chemical Geology,2009,268(3−4):211−225.
|
[31] |
SCHEFFLER K,BUEHMANN D,SCHWARK L. Analysis of Late Palaeozoic glacial to postglacial sedimentary successions in South Africa by geochemical proxies-Response to climate evolution and sedimentary environment[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,2006,240(1/2):184−203.
|
[32] |
李 祥,李 伍. 淮北煤田朱庄煤矿煤中微量元素地球化学特征[J]. 煤炭科学技术,2023,51(8):178−191.
LI Xiang,LI Wu. Geochemical characteristics of trace elements in Zhuzhuang coal mine of Huaibei coalfield[J]. Coal Science and Technology,2023,51(8):178−191.
|
[33] |
JONES B,MANNING D A C. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones[J]. Chemical geology,1994,111(1−4):111−129. doi: 10.1016/0009-2541(94)90085-X
|
[34] |
张 冀,雷国明,周继兵. 准东煤田五彩湾矿区西山窑组层序地层学及聚煤规律分析[J]. 新疆地质,2014,32(2):261−265.
ZHANG Ji,LEI Guoming,ZHOU Jibing. The sequence stratigraphy and the coal-accumulating of Xishanyao Formation in Wucaiwan prospecting area of eastern Junggar Coalfield,Xinjiang[J]. Xinjiang Geology,2014,32(2):261−265.
|
[35] |
游海涛,程日辉,刘昌岭. 古盐度复原法综述[J]. 世界地质,2002,21(2):111−117.
YOU Haitao,CHENG Rihui,LIU Changling. Review of paleosalinity recovering methods[J]. World Geology,2002,21(2):111−117.
|
[36] |
孙立广,谢周清,赵俊琳. 南极阿德雷岛湖泊沉积物Sr/Ba与B/Ga比值特征[J]. 海洋地质与第四纪地质,2000,20(4):43−46.
SUN Liguang,XIE Zhouqing,ZHAO Junlin. The characteristics of Sr/Ba and B/Ga ratios in lake sediments on the Ardley Peninsula,maritime Antarctic[J]. Marine Geology& Quaternary Geology,2000,20(4):43−46.
|
[37] |
车青松,黄文辉,久 博,等. 沁水盆地霍州矿区石炭–二叠纪煤中微量元素地球化学特征及沉积环境分析[J]. 煤炭科学技术,2022,50(9):138−146.
CHE Qingsong,HUANG Wenhui,JIU Bo,et al. Geochemical characteristics and sedimentary environment analysis of trace elements in Carboniferous-Permian coal in Huozhou Area,Qinshui Basin[J]. Coal Science and Technology,2022,50(9):138−146.
|
[38] |
魏 巍,Thomas J. Algeo,陆永潮,等. 古盐度指标与渤海湾盆地古近系海侵事件初探[J]. 沉积学报,2021,39(3):571−592.
WEI Wei,ALGEO T J,LU Yongchao,et al. Paleosalinity proxies and marine incursions into the Paleogene Bohai Bay Basin lake system,northeastern China[J]. Acta Sedimentologica Sinica,2021,39(3):571−592.
|
[39] |
邵龙义,刘红梅,田宝霖,等. 上扬子地区晚二叠世沉积演化及聚煤[J]. 沉积学报,1998,16(2):55−60.
SHAO Longyi,LIU Hongmei,TIAN Baolin,et al. Sedimentary evolution and its controls on coal accumulation for the Late Permian in the upper Yangtze area[J]. Acta Sedimentologica Sinica,1998,16(2):55−60.
|
[40] |
MATHEWS R P,PILLAI S S K,MANOJ M,et al. Palaeoenvironmental reconstruction and evidence of marine influence in Permian coal-bearing sequence from Lalmatia Coal mine (Rajmahal Basin),Jharkhand,India:A multi-proxy approach[J]. International Journal of Coal Geology,2020,224:103485. doi: 10.1016/j.coal.2020.103485
|
[41] |
CHEN J,WANG Y,CHEN Y,et al. Rb and Sr geochemical characterization of the Chinese Loess stratigraphy and its implications for palaeomonsoon climate[J]. Acta Geologica Sinica(English Edition),2000,74:279−288. doi: 10.1111/j.1755-6724.2000.tb00462.x
|
[42] |
熊小辉,肖加飞. 沉积环境的地球化学示踪[J]. 地球与环境,2011,39(3):405−414.
XIONG Xiaohui,XIAO Jiafei. Geochemical indicators of sedimentary environments:A summary[J]. Earth and Environment,2011,39(3):405−414.
|
[43] |
LERMAN A,IMBODEN D M,GAT J R,et al. Physics and Chemistry of Lakes[M]. Berlin:Springer-Verlag,1995:1−350.
|
[44] |
张国仁. 利用沉积地球化学特征分析古环境及海平面变化:以鲁西东部中下寒武统为例[J]. 辽宁地质,1997(1):8−13.
ZHANG Guoren. On the paleoenvironment and the change of sea level through the characteristics of sedimentary geochemistry—as an example of mid-lower Cambrian series in the east of west Shandong Province[J]. Liaoning Geology,1997(1):8−13.
|
[45] |
李振清,周洪瑞,陈建强. 山东淄博地区上寒武统沉积地球化学特征及其层序地层学意义[J]. 现代地质,2001,15(4):377−382.
LI Zhenqing,ZHOU Hongrui,CHEN Jianqiang. Sedimental geochemical characteristics and application of the Upper Cambrian in Zibo area,Shandong[J]. Geoscience,2001,15(4):377−382.
|
[46] |
刘俊海,吴志轩,于 水,等. 丽水凹陷古新统微量元素地球化学特征及其地质意义[J]. 中国海上油气,2005,17(1):8−11.
LIU Junhai,WU Zhixuan,YU Shui,et al. Paleocence trace element geochemistry and its geological significance in Lishui Sag[J]. China Offshore Oil and Gas,2005,17(1):8−11.
|
[47] |
张宇航,王德利. 新疆准东煤田东部矿区西山窑组煤层煤相分析[J]. 山东国土资源,2017,33(7):17−24.
ZHANG Yuhang,WANG Deli. Analysis on coal facies of Xishanyao coal strata in eastern mining area of Zhundong coalfield in Xinjiang Uygur Autonomous Region[J]. Shandong Land and Resources,2017,33(7):17−24.
|
[48] |
何 静. 准东巨厚煤层成煤植被类型及古环境演替规律:以五彩湾矿区为例[D]. 乌鲁木齐:新疆大学,2020:30−40.
HE Jing. Types of coal forming vegetation and succession of paleoenvironment of Middle the huge thick Jurassic coal seams in eastern Dzungaria Basin,China:a case study of Wucaiwan mining area[D]. Urumqi:Xingjiang University,2020:30−40.
|
[49] |
JONES T P,SCOTT A C,COPE M. Reflectance measurements and the temperature of formation of modern charcoals and implications for studies of fusain[J]. Bulletin de la Société Géologique de France,1991,2(162):193−200.
|
[50] |
SCOTT A C,GLASSPOOL I J. Observations and experiments on the origin and formation of inertinite group macerals[J]. International Journal of Coal Geology,2007,70(1-3):53−66. doi: 10.1016/j.coal.2006.02.009
|
[51] |
GLASSPOOL I J,SCOTT A C. Phanerozoic concentrations of atmospheric oxygen reconstructed from sedimentary charcoal[J]. Nature Geoscience,2010,3(9):627−630. doi: 10.1038/ngeo923
|
[52] |
BELCHER C M,MCELWAIN J C. Limits for combustion in low O2 redefine paleoatmospheric predictions for the Mesozoic[J]. Science,2008,321(5893):1197−1200. doi: 10.1126/science.1160978
|
[53] |
BELCHER C M,YEARSLEY J M,Hadden R M,et al. Baseline intrinsic flammability of Earth’s ecosystems estimated from paleoatmospheric oxygen over the past 350 million years[J]. PNAS,2010,107(52):22448−22453. doi: 10.1073/pnas.1011974107
|
[54] |
MILLS B J W,BELCHER C M,LENTON T M. A modeling case for high atmospheric oxygen concentrations during the Mesozoic and Cenozoic[J]. Geology,2016,44:1023−1026.
|
[55] |
XU Y,UHL D,ZHANG N,et al. Evidence of widespread wildfires in coal seams from the Middle Jurassic of Northwest China and its impact on paleoclimate[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,2020,559:109819.
|
[56] |
杨 博,田继军,冯 烁,等. 准噶尔盆地东部中侏罗世煤中记录的古野火事件[J]. 煤炭科学技术,2022,50(7):261−270.
YANG Bo,TIAN Jijun,FENG Shuo,et al. Wildfires recorded in Middle Jurassic coals in eastern of Junggar Basin in Xinjiang,China[J]. Coal Science and Technology,2022,50(7):261−270.
|
[57] |
WILDMAN R A,HICKEY L J,DICKINSON M B,et al. Burning of forest materials under late Paleozoic high atmospheric oxygen levels[J]. Geology,2004,32(5):457−460. doi: 10.1130/G20255.1
|
[58] |
XU X T,SHAO L Y,ERIKSSON K A,et al. Widespread wildfires linked to early Albian Ocean Anoxic Event 1b:Evidence from the Fuxin lacustrine basin,NE China[J]. Global and Planetary Change,2022,215:103858. doi: 10.1016/j.gloplacha.2022.103858
|
[59] |
TANNER L H,WANG X,MORABITO A C. Fossil charcoal from the Middle Jurassic of the Ordos Basin,China and its paleoatmospheric implications[J]. Geoscience Frontiers,2012,3(4):493−502. doi: 10.1016/j.gsf.2011.12.001
|
[60] |
ZHANG Z H,WANG C S,LYU D W,et al. Precessionscale climate forcing of peatland wildfires during the early middle Jurassic greenhouse period[J]. Global and Planetary Change,2020,184:103051. doi: 10.1016/j.gloplacha.2019.103051
|
1. |
鲁红升, 杨阳, 吴洋, 严向阳, 林波. 煤层气促解吸剂作用机理研究进展. 日用化学工业(中英文). 2025(06)
![]() | |
2. |
黄良,李希建,刘钰,陈守坤. 黔西矿区软硬分层煤温度-压力耦合影响瓦斯解吸试验. 工矿自动化. 2025(01): 156-162+170 .
![]() |