Advance Search
YAO Yupeng,ZHANG Jinglin,XIONG Wu. Method of tail beam posture prediction of top coal caving hydraulic support based on LSTM[J]. Coal Science and Technology,2025,53(5):362−371. DOI: 10.12438/cst.2024-0211
Citation: YAO Yupeng,ZHANG Jinglin,XIONG Wu. Method of tail beam posture prediction of top coal caving hydraulic support based on LSTM[J]. Coal Science and Technology,2025,53(5):362−371. DOI: 10.12438/cst.2024-0211

Method of tail beam posture prediction of top coal caving hydraulic support based on LSTM

More Information
  • Received Date: February 19, 2024
  • Available Online: May 13, 2025
  • Fully mechanized caving is the main mining method for extra-thick coal seams in my country. The control accuracy of the caving actuator depends largely on the data feedback of the tail beam posture. In order to improve the control accuracy of the caving actuator, a method for predicting the inclination of the support tail beam based on the long short-term memory neural network (LSTM) was proposed. The absolute coordinates of the support bottom plate, the inclination of the tail beam, the relative height of the tail beam, the frame shifting rate and the column pressure related to the tail beam caving action were used as the input variables of the RNN convolutional network and the LSTM neural network. The historical data of coal caving in a fully mechanized caving working face of a coal mine were used to train and verify the support tail beam posture prediction model, and the support tail beam posture prediction model was established. The tail beam inclination was predicted for 16 consecutive hours. The fitting degree of the predicted tail beam inclination curve and the actual tail beam inclination curve reached 98.7%. In the fully mechanized top coal caving face, 3~4 production shifts of hydraulic support tail beam inclination prediction tests were carried out. After comparing and analyzing the predicted tail beam inclination curve with the actual tail beam inclination curve, when the confidence interval was (0.98, 1.02), the prediction accuracy for 16 hours of continuous production was 98.40%. The LSTM-based support tail beam inclination posture prediction method solved the problem of tail beam inclination control in the electro-hydraulic control system's adaptive coal caving operation, laying the foundation for unmanned coal caving in the fully mechanized top coal caving face.

  • [1]
    王国法,徐亚军,张金虎,等. 煤矿智能化开采新进展[J]. 煤炭科学技术,2021,49(1):1−10.

    WANG Guofa,XU Yajun,ZHANG Jinhu,et al. New development of intelligent mining in coal mines[J]. Coal Science and Technology,2021,49(1):1−10.
    [2]
    王家臣. 我国综放开采40年及展望[J]. 煤炭学报,2023,48(1):83−99.

    WANG Jiachen. 40 years development and prospect of longwall top coal caving in China[J]. Journal of China Coal Society,2023,48(1):83−99.
    [3]
    张守祥,张学亮,刘帅,等. 智能化放顶煤开采的精确放煤控制技术[J]. 煤炭学报,2020,45(6):2008−2020.

    ZHANG Shouxiang,ZHANG Xueliang,LIU Shuai,et al. Intelligent precise control technology of fully mechanized top coal caving face[J]. Journal of China Coal Society,2020,45(6):2008−2020.
    [4]
    王祖洸.特厚煤层群组放煤理论及智能放煤控制方法研究[D].焦作:河南理工大学,2022.

    WANG Zuguang. Study on the theory of coal release in extremely thick coal seam groups and intelligent coal release control methods [D]. Jiaozuo:Henan Polytechnic University, 2022.
    [5]
    马长青, 李旭阳, 李峰, 等. 基于多传感器融合的液压支架位姿精确感知方法[J]. 工矿自动化,2025,51(4):114−119.

    MA Changqing, LI Xuyang, LI Feng, et al. Precise perception method for hydraulic support pose based on multi-sensor fusion[J]. Industry and Mine Automation,2025,51(4):114−119.
    [6]
    姚钰鹏, 熊武. 基于行为分析的工作面移架决策模型[J]. 煤矿机电,2025,46(1):1−7.

    YAO Yupeng, XIONG Wu. Working face frame-moving decision model based on behavior analysis[J]. Coal Mine Machinery,2025,46(1):1−7.
    [7]
    李首滨, 李森, 张守祥, 等. 综采工作面智能感知与智能控制关键技术与应用[J]. 煤炭科学技术,2021,49(4):28−39.

    LI Shoubin, LI Sen, ZHANG Shouxian, et al. Key Technologies and applications of intelligent perception and intelligent control in fully mechanized mining face[J]. Coal Science and Technology,2021,49(4):28−39.
    [8]
    庞义辉,刘新华,王泓博,等. 基于千斤顶行程驱动的液压支架支护姿态与高度解析方法[J]. 采矿与安全工程学报,2023,40(6):1231−1242.

    PANG Yihui,LIU Xinhua,WANG Hongbo,et al. Support attitude and height analysis method of hydraulic support based on jack stroke drive[J]. Journal of Mining & Safety Engineering,2023,40(6):1231−1242.
    [9]
    王忠乐. 综采液压支架姿态监测及控制技术[J]. 工矿自动化,2022,48(S2):116−118.

    WANG Zhongle. Attitude monitoring and control technology of fully mechanized mining hydraulic support[J]. Industry and Mine Atuomation,2022,48(S2):116−118.
    [10]
    徐亚军,王国法,刘业献. 两柱掩护式液压支架承载特性及其适应性研究[J]. 煤炭学报,2016,41(8):2113−2120.

    XU Yajun,WANG Guofa,LIU Yexian. Supporting property and adaptability of 2-leg powered support[J]. Journal of China Coal Society,2016,41(8):2113−2120.
    [11]
    伍永平, 杜玉乾, 解盘石, 等. 大倾角煤层伪俯斜工作面平行四边形液压支架结构设计与运动响应[J]. 煤炭科学技术,2024,52(4):314−325.

    WU Yongping, DU Yuqian, XIE Panshi, et al. Structural design and motion response of parallelogram hydraulic support for pseudo-inclined working face in steeply inclined coal seam[J]. Coal Science and Technology,2024,52(4):314−325.
    [12]
    李建.曹家滩超大采高工作面压力—位姿数据融合分析及应用[D].北京:煤炭科学研究总院,2024.

    LI Jian. Pressure-pose data fusion analysis and application in caojiatan ultra-large mining height working face [D]. Beijing:China Coal Research Institute, 2024.
    [13]
    王文苗.松软厚煤层大采高综采面支架-围岩系统状态感知与稳定性评价研究[D].徐州:中国矿业大学,2024.

    WANG Wenmiao. Research on state perception and stability evaluation of support-surrounding rock system in soft thick coal seam with large mining height comprehensive mining face [D]. Xuzhou:China University of Mining and Technology, 2024.
    [14]
    李博,郭星燃,李娟莉,等. 基于LSTM-Adam的刮板输送机链传动系统故障预警方法[J]. 工矿自动化,2023,49(9):140−146.

    LI Bo,GUO Xingran,LI Juanli,et al. A fault warning method for scraper conveyor chain transmission system based on LSTM-Adam[J]. Industry and Mine Atuomation,2023,49(9):140−146.
    [15]
    杨进.基于RF算法与LSTM神经网络对矿工呼吸流量的长短期预测[D].徐州:中国矿业大学,2023.

    YANG Jin. Short- and long-term prediction of miners' respiratory flow based on rf algorithm and LSTM Neural Network [D]. Xuzhou:China University of Mining and Technology, 2023.
  • Related Articles

    [1]LI Huaizhan, SUN Jingchao, GUO Guangli, TANG Chao, ZHENG Hui, ZHANG Liangui, MENG Fanzhen. Evolution characteristics and development height prediction method of water-conducting crack zone in thick weak cemented overlying strata[J]. COAL SCIENCE AND TECHNOLOGY, 2025, 53(2): 289-300. DOI: 10.12438/cst.2023-1931
    [2]WU Jianhong, PAN Junfeng, GAO Jiaming, YAN Yaodong, MA Hongyuan. Research on prediction of the height of water-conducting fracture zone in Huanglong Jurassic Coalfield[J]. COAL SCIENCE AND TECHNOLOGY, 2023, 51(S1): 231-241. DOI: 10.13199/j.cnki.cst.2023-0151
    [3]ZHAO Kaigong, ZHANG Xiaolei, LI Zhangming, CHEN Gang, GAI Yongling. Numerical simulation on prediction model of risk range of typical gas release through small holes[J]. COAL SCIENCE AND TECHNOLOGY, 2023, 51(3): 281-290. DOI: 10.13199/j.cnki.cst.2022-1948
    [4]MA Li, ZHANG Jianguo, ZHANG Leiming, TU Yuhang, WU Jing, LIAN Kaiyuan. Study on prediction of blast casting results in open-pit minebased on IPSO-ELM model[J]. COAL SCIENCE AND TECHNOLOGY, 2021, 49(9): 69-75.
    [5]MA Li, WEI Ze, ZOU Li, YI Xin, HE Chengmao. Influence factors and prediction of critical parameters of spontaneous combustion of pulverized coal[J]. COAL SCIENCE AND TECHNOLOGY, 2021, 49(4): 206-212. DOI: 10.13199/j.cnki.cst.2021.04.025
    [6]SONG Guoliang, YANG Xueting, YANG Shaobo. Study on prediction model of alkali metal contamination characteristics during high alkali coal combustion[J]. COAL SCIENCE AND TECHNOLOGY, 2020, 48(2).
    [7]LIU Peng WEI Huizi, JING Jiangbo, YANG Yanyan, . Predicting technology of gas emission quantity in coal mine based on enhanced CART regression algorithm[J]. COAL SCIENCE AND TECHNOLOGY, 2019, (11).
    [8]QI Qingjie, ZHAO Youxin, LI Xinghua, ZHOU Xinhua. Prediction model of CO emission volume from goaf[J]. COAL SCIENCE AND TECHNOLOGY, 2018, (2).
    [9]Zhu Lingqi Shao Jingjing Wang Fusheng, . Criterion of initial coal spontaneous combustion with prediction model of concentration ratio of CO2 and CO[J]. COAL SCIENCE AND TECHNOLOGY, 2015, (7).
    [10]MENG Zhao-ping GUO Yan-sheng ZHANG Jji-xing, . Application and Prediction Model of Coalbed Methane Content Based on Logging Parameters[J]. COAL SCIENCE AND TECHNOLOGY, 2014, (6).
  • Cited by

    Periodical cited type(19)

    1. 池小楼,韦忠华,杨科,王春梅,王同. 大倾角煤层下分层复采破碎顶板注浆改性试验研究. 煤炭科学技术. 2025(02): 27-40 . 本站查看
    2. 解盘石,黄宝发,伍永平,罗生虎,朱明建,易磊磊,徐辉,陈建杰. 大倾角工作面覆岩三维破断运移演化规律. 煤炭科学技术. 2025(02): 12-26 . 本站查看
    3. 王萌. 急倾斜特厚煤层水平分段工作面顶板应力演化及破坏机理研究. 煤炭工程. 2025(04): 101-107 .
    4. 孙振敏,杨志良. 急倾斜煤层水平分段开采顶板应力演化规律数值模拟研究. 煤炭技术. 2024(01): 75-79 .
    5. 伍永平,郎丁,贠东风,解盘石,王红伟,高喜才,罗生虎,曾佑富,吕文玉,张艳丽,胡博胜,皇甫靖宇,周邦远,黄国春,王丽,李俊明,刘斌. 我国大倾角煤层开采技术变革与展望. 煤炭科学技术. 2024(01): 25-51 . 本站查看
    6. 高利军,晋发东,梁东宇,杨文斌,汤业鹏,王同. 大倾角采场围岩应力分布及矸石充填特征的倾角效应研究. 工矿自动化. 2024(03): 142-150 .
    7. 王红伟,焦建强,伍永平,蒋宝林,罗生虎,王同. 急倾斜短壁综放采场围岩采动应力演化规律. 采矿与安全工程学报. 2024(03): 462-471 .
    8. 舒梅. 山体下急倾斜煤层合理区段煤柱留设研究. 煤炭与化工. 2024(04): 18-24 .
    9. 李建东. 急倾斜煤层大采高工作面回采工艺优化研究. 矿业装备. 2024(06): 42-44 .
    10. 李腾,姜永东,刘华君,邹勇,桂涛,陈飞. 急倾斜大采高综采工作面沿空留巷技术研究. 煤炭科学技术. 2024(S2): 1-9 . 本站查看
    11. 纪鹏伟. 灵泉煤矿10594工作面急倾斜煤层采煤工艺研究. 煤矿现代化. 2023(01): 58-61 .
    12. 伍永平,解盘石,贠东风,王红伟,罗生虎,高喜才,郎丁,胡博胜,闫壮壮,王同. 大倾角层状采动煤岩体重力-倾角效应与岩层控制. 煤炭学报. 2023(01): 100-113 .
    13. 贠东风,李浩男,伍永平,黄正平,杨磷. 大倾角煤层综采产效要素系统分析与促产提效精准策略研究. 煤炭科学技术. 2023(04): 1-10 . 本站查看
    14. 王正帅. 急倾斜煤层分段开采下部煤岩体应力及位移演化规律. 科学技术与工程. 2023(19): 8133-8139 .
    15. 李树刚,刘李东,赵鹏翔,林海飞,卓日升. 倾斜厚煤层卸压瓦斯靶向区辨识及抽采关键技术. 煤炭科学技术. 2023(08): 105-115 . 本站查看
    16. 马志辉. 急倾斜煤层综合采煤设备“三机”配套优化研究. 现代制造技术与装备. 2023(11): 1-3 .
    17. 王圣志,袁永,朱成,袁超峰,钟慧伟. 仰斜综放开采顶煤运移规律及合理放煤参数研究. 煤炭科学技术. 2022(05): 104-109 . 本站查看
    18. 常博,刘旭东,张传明,贾冲,闫瑞兵,任杰. 急倾斜煤岩互层巷道变形特征及机理研究. 煤炭科学技术. 2022(08): 40-49 . 本站查看
    19. 吴艳,刘旭东,王海军,王相业,吴敏杰,马良. 急倾斜煤层隐蔽致灾因素探查及防治技术. 中国煤炭. 2022(S2): 17-27 .

    Other cited types(4)

Catalog

    Article views (38) PDF downloads (14) Cited by(23)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return