WU Jianhong,PAN Junfeng,GAO Jiaming,et al. Research on prediction of the height of water-conducting fracture zone in Huanglong Jurassic Coalfield[J]. Coal Science and Technology,2023,51(S1):231−241
. DOI: 10.13199/j.cnki.cst.2023-0151Citation: |
WU Jianhong,PAN Junfeng,GAO Jiaming,et al. Research on prediction of the height of water-conducting fracture zone in Huanglong Jurassic Coalfield[J]. Coal Science and Technology,2023,51(S1):231−241 . DOI: 10.13199/j.cnki.cst.2023-0151 |
In order to obtain the prediction model of the height of the water-conducting fracture zone applicable to the mining conditions of thick and extra-thick coal seams in Huanglong coalfield, the Jurassic coalfield in Huanglong is taken as the study area, based on 38 groups of measured data of the height of the water-conducting fracture zone, and the impact of mining thickness, slope length of the working face, buried depth of the coal seam, overburden type, and mining method on the height of the water-conducting fracture zone is comprehensively considered, a multivariate nonlinear regression model and a BP neural network model optimized by genetic algorithm for the prediction of the height of the water-conducting fracture zone in Huanglong coalfield are constructed based on the data-driven method, and the two models are applied to the prediction of the height of the water-conducting fracture zone in the 401101 working face of Mengcun Mine. The results show that: The height of the hydraulic fracture zone is affected by many factors. The fitting coefficient of the regression model is increased from 0.52 of the mining thickness to 0.82 of the comprehensive multiple factors. From the perspective of data-driven, it is concluded that the weight value of the factors affecting the height of the water-conducting fracture zone in Huanglong Coalfield is ranked as follows: mining thickness > slope length of the working face > overburden type > buried depth of the coal seam > mining method. The mining thickness and the slope length of the working face are the main control factors affecting the height of the water-conducting fracture zone, which should be controlled during the mining process to achieve the purpose of preventing and controlling the water hazard of the coal seam roof.The application results of the model show that the maximum relative error of the multivariate nonlinear regression model is −3.67%, while the maximum relative error of the GA-BP neural network model is only −1.95%. The relative errors of both prediction models are less than 5%, which can meet the requirements of engineering practice. When the requirements for prediction accuracy are high, the GA-BP neural network prediction model can be selected. The research results can provide a certain basis and reference for the study of the height of the water-conducting fracture zone under the conditions of thick and extra-thick coal seams in Huanglong Coal Field.
[1] |
靳德武,李超峰,刘英锋,等. 黄陇煤田煤层顶板水害特征及其防控技术[J]. 煤田地质与勘探,2023,51(1):205−213.
JIN Dewu,LI Chaofeng,LIU Yingfeng,et al. Characteristics of roof water hazard of coal seam in Huanglong Coalfield andkey technologies for prevention and control[J]. Coal Geology & Exploration,2023,51(1):205−213.
|
[2] |
曾一凡, 武 强, 赵苏启, 等. 我国煤矿水害事故特征、致因与防治对策[J]. 煤炭科学技术, 2023, 51(7): 1−14.
ZENG Yifan, WU Qiang, ZHAO Suqi, et al. Characteristics, causes, and prevention measures of coal mine water hazard accidents in China[J]. Coal Science and Technology, 2023, 51(7): 1−14.
|
[3] |
程 磊,罗 辉,李 辉,等. 近年来煤矿采动覆岩导水裂隙带的发育高度的研究进展[J]. 科学技术与工程,2022,22(1):28−38.
CHENG Lei,LUO Hui,LI Hui,et al. Research progress on the development height of water-conducting fracture zone in overlying strata caused by coal mining in recent years[J]. Science Technology and Engineering,2022,22(1):28−38.
|
[4] |
郭兵兵,孙文标,刘长武. 煤层开采导水裂隙带发育高度研究综述[J]. 科学技术与工程,2015,15(17):100−104.
GUO Bingbing,SUN Wenbiao,LIU Changwu. Research overview on the height of water flowing fractured zone after coal mining[J]. Science Technology and Engineer-ing,2015,15(17):100−104.
|
[5] |
马雄德,王苏健,蒋泽泉,等. 神南矿区采煤导水裂隙带高度预测[J]. 西安科技大学学报,2016,36(5):664−668.
MA Xiongde,WANG Sujian,JIANG ZEquan,et al. Prediction on the height of water-flowing fractured zone in southern Shenmu mine[J]. Journal of Xi’an University of Science and Technology,2016,36(5):664−668.
|
[6] |
梁世伟. 榆阳煤矿2301工作面导水裂隙带高度的数值模拟[J]. 中国安全生产科学技术,2013,9(3):46−50.
LIANG Shiwe. Numerical simulation on development height of crack water conducted zone in 2301 face of Yuyang coal mine[J]. Journal of Safety Science and Technology,2013,9(3):46−50.
|
[7] |
李超峰. 黄陇煤田综放采煤顶板导水裂缝带高度发育特征[J]. 煤田地质与勘探,2019,47(2):129−136.
LI Chaofeng. Characteristics of height of water flowing fractured zone in the roof caused during fully- mechanized caving mining in Huanglong coalfield[J]. Coal Geology & Exploration,2019,47(2):129−136.
|
[8] |
尹尚先,徐 斌,徐 慧,等. 综采条件下煤层顶板导水裂缝带高度计算研究[J]. 煤炭科学技术,2013,41(9):138−142.
YIN Shangxian,XU Bin,XU Hui,et al. Study on height calculation of water conducted fractured zone caused by fully mechanized mining[J]. Coal Science and Technology,2013,41(9):138−142.
|
[9] |
胡小娟,李文平,曹丁涛,等. 综采导水裂隙带多因素影响指标研究与高度预计[J]. 煤炭学报,2012,37(4):613−620.
HU Xiaojuan,LI Wenping,CAO Dingtao,et al. Index of multiple factors and expected height of fully mechanized water flowing fractured zone[J]. Journal of China Coal Society,2012,37(4):613−620.
|
[10] |
李 博,吴 煌,李 腾. 基于加权的综采导水裂隙带高度多元非线性回归预测方法研究[J]. 采矿与安全工程学报,2022,39(3):536−545.
LI Bo,WU Huang,LI Teng. Height prediction of water-conducting fractured zone under fully mechanized mining based on weighted multivariate nonlinear regression[J]. Journal of Mining & Safety Engineering,2022,39(3):536−545.
|
[11] |
李振华,许延春,李龙飞,等. 基于BP神经网络的导水裂隙带高度预测[J]. 采矿与安全工程学报,2015,32(6):905−910.
LI Zhenhua,XU Yanchun,LI Longfei,et al. Forecast of the height of water flowing fractured zone based on BP neural networks[J]. Journal of Mining & Safety Engineering,2015,32(6):905−910.
|
[12] |
毛志勇,赖文哲,黄春娟. 基于APSO-LSSVM模型的导水裂隙带高度预测[J]. 辽宁工程技术大学学报(自然科学版),2020,39(1):34−40.
MAO Zhiyong,LAI Wenzhe,HUANG Chunjuan. Prediction of height of water flowing fractured zone based on APSO-LSSVM model[J]. Journal of Liaoning Technical University(Natural Science),2020,39(1):34−40.
|
[13] |
柴华彬,张俊鹏,严 超. 基于GA-SVR的采动覆岩导水裂隙带高度预测[J]. 采矿与安全工程学报,2018,35(2):359−365.
CHAI Huabin,ZHANG Junpeng,YAN Chao. Prediction of water flowing height in fractured zone of overburden strata based on GA-SVR[J]. Journal of Mining & Safety Engineering,2018,35(2):359−365.
|
[14] |
贺 丹,李智学. 黄陇侏罗纪煤田控煤构造研究[J]. 中国煤炭地质,2011,23(10):14−18.
HE Dan,LI Zhixue. A study on coal-control structure in Huangling-longxian Jurassic coalfield[J]. Coal Geology of China,2011,23(10):14−18.
|
[15] |
潘俊锋,简军峰,刘少虹,等. 黄陇侏罗纪煤田冲击地压地质特征与防治[J]. 煤矿开采,2019,24(1):110−115.
PAN Junfeng,JIAN Junfeng,LIU Shaohong,et al. Geological characteristic and control of rock burst of Huanglong Jurassic Coal Mine Field[J]. Coal Mining Technology,2019,24(1):110−115.
|
[16] |
孙云普,王云飞,郑晓娟. 基于遗传−支持向量机法的煤层顶板导水断裂带高度的分析[J]. 煤炭学报,2009,34(12):1610−1615.
SUN Yunpu,WANG Yunfei,ZHENG Xiaojuan. Analysis the height of water conducted zone of coal seam roof based on GA-SVR[J]. Journal of China Coal Society,2009,34(12):1610−1615.
|
[17] |
张玉军,申晨辉,张志巍,等. 我国厚及特厚煤层高强度开采导水裂缝带发育高度区域分布规律[J]. 煤炭科学技术,2022,50(5):38−48.
ZHANG Yujun,SHEN Chenhui,ZHANG Zhiwei,et al. Regional distribution law of water conducting fractured zone height in high-strength mining of thick and extremely thick coal seam in China[J]. Coal Science and Technology,2022,50(5):38−48.
|
[18] |
盛奉天,段玉清. 彬长矿区巨厚砂岩含水层下综放开采导水裂隙带高度研究[J]. 煤炭工程,2022,54(3):84−89.
SHENG Fengtian,DUAN Yuqing. Height of water-conducting fracture zone in fully mechanized caving mining under extra-thick sandstone aquifer in Binchang mining area[J]. Coal Engineering,2022,54(3):84−89.
|
[19] |
吕广罗,杨 磊,田刚军,等. 深埋特厚煤层综放开采顶板导水裂隙带发育高度探查分析[J]. 中国煤炭,2016,42(11):53−57.
LYU Guangluo,YANG Lei,TIAN Gangjun,et al. Detection and analysis of height of water flowing fractured zone in roof of fully mechanized caving face in deep and extra thick seam[J]. Coal Geology of China,2016,42(11):53−57.
|
[20] |
曹 理,郭 翔,高 莎,等. 郭家河煤矿导水裂隙带高度浅析[J]. 科学与财富,2021,13(25):112−113.
CAO Li,GUO Xiang,GAO Sha,et al. Analysis on the height of water diversion fissure zone in Guojiahe Coal Mine[J]. Journal of Science & Wealth,2021,13(25):112−113.
|
[21] |
闫 鑫,侯恩科,袁西亚,等. 胡家河煤矿导水裂隙带发育高度研究[J]. 陕西煤炭,2019,38(1):51−53,132.
YAN Xin,HOU Enke,YUAN Xiya,et al. Research on the development height of water flowing fracture zone in Hujiahe coal mine[J]. Shaanxi Coal,2019,38(1):51−53,132.
|
[22] |
徐 群. 非线性回归分析的方法研究[D]. 合肥: 合肥工业大学, 2009: 11−12.
XU Qun. The research on non-linear regression analysis methods [D]. Hefei: Hefei University of Technology, 2009: 11−12.
|
[23] |
李 奇,秦玉金,高中宁. 基于BP神经网络的覆岩“两带”高度预测研究[J]. 煤炭科学技术,2021,49(8):53−59.
LI Qi,QIN Yujin,GAO Zhongning. Research on prediction of water conducted fissure height in roof of coal mining seam[J]. Coal Science and Technology,2021,49(8):53−59.
|
[24] |
娄高中,谭 毅. 基于PSO-BP神经网络的导水裂隙带高度预测[J]. 煤田地质与勘探,2021,49(4):198−204.
LOU Gaozhong,TAN Yi. Prediction of the height of water flowing fractured zone based on PSO-BP neural network[J]. Coal Geology & Exploration,2021,49(4):198−204.
|
[25] |
颜建国,郑书闽,郭鹏程,等. 基于GA-BP神经网络的超临界CO2传热特性预测研究[J]. 化工学报,2021,72(9):4649−4657.
YAN Jianguo,ZHENG Shumin,GUO Pengcheng,et al. Prediction of the height of water flowing fractured zone based on PSO-BP neural network[J]. Journal of Chemical Industry and Engineering,2021,72(9):4649−4657.
|
[26] |
刘奕君,赵 强,郝文利. 基于遗传算法优化BP神经网络的瓦斯浓度预测研究[J]. 矿业安全与环保,2015,42(2):56−60.
LIU Yijun,ZHAO Qiang,HAO Wenli. Study of gas concentration prediction based on genetic algorithm and optimizing BP neural network[J]. Mining Safety & Environmental Protection,2015,42(2):56−60.
|
[27] |
朱建民,于永堂,郑建国,等. 基于GA-BP神经网络的黄土高填方工后沉降预测[J]. 地下空间与工程学报,2021,17(S1):382−386,418.
ZHU Jianmin1,YU Yongtang,ZHENG Jianguo,et al. Prediction of post-construction settlement of high loess-filled based on GA-BP neural network[J]. Chinese Journal of Underground Space and Engineering,2021,17(S1):382−386,418.
|
[28] |
王正帅,邓喀中,谭志祥. 导水裂缝带高度预测的模糊支持向量机模型[J]. 地下空间与工程学报,2011,7(4):723−727.
WANG Zhengshuai,DENG Kazhong,TAN Zhixiang. Height prediction of water fractured zone based on fuzzy SVM[J]. Chinese Journal of Underground Space and Engineering,2011,7(4):723−727.
|
[29] |
薛建坤,王 皓,赵春虎,等. 鄂尔多斯盆地侏罗系煤田导水裂隙带高度预测及顶板充水模式[J]. 采矿与安全工程学报,2020,37(6):1222−1230.
XUE Jiankun,WANG Hao,ZHAO Chunhu,et al. Prediction of the height of water-conducting fracture zone and water-filling model of roof aquifer in Jurassic coalfield in Ordos Basin[J]. Journal of Mining & Safety Engineering,2020,37(6):1222−1230.
|
[30] |
国家安全监管总局, 国家煤矿安监局, 国家能源局, 等. 建筑物、水体、铁路及主要井巷煤柱留设与压煤开采规程[M]. 北京: 煤炭工业出版社, 2017: 54-56.
State Administration of Safety, State Administration of Coal Mine Safety, National Energy Administration, et al. Regulations for coal pillar retention and coal mining in buildings, water bodies, railways and main shafts[M]. Beijing: China Coal Industry Press, 2017: 54-56.
|
[31] |
胡炳南, 张华兴, 申宝宏. 建筑物、水体、铁路及主要井巷煤柱留设与压煤开采指南[M]. 北京: 煤炭工业出版社, 2017: 33-35.
HU Bingnan, ZHANG Huaxing, SHEN Baohong. Guide for Coal pillar retention and coal pressing in Buildings, water bodies, railways and main shafts[M]. Beijing: China Coal Industry Press, 2017: 33-35.
|
[32] |
马亚杰,武 强,章之燕,等. 煤层开采顶板导水裂隙带高度预测研究[J]. 煤炭科学技术,2008,36(5):59−62.
MA Yajie,WU Qiang,ZHANG Zhiyan,et al. Research on prediction of water conducted fissure height in roof of coal mining seam[J]. Coal Science and Technology,2008,36(5):59−62.
|
[33] |
靳德武,刘英锋,王甜甜. 巨厚砂岩含水层下厚煤层综放减水开采技术[J]. 煤炭科学技术,2020,48(9):88−95.
JIN Dewu,LIU Yingfeng,WANG Tiantian. Water-reducing mining technology for fully-mechanized top-coal caving mining in thick coal seams under ultra-thick sandstone aquifer[J]. Coal Science and Technology,2020,48(9):88−95.
|
[34] |
伍增强,李岁宁,师雄毅. 特厚煤层综采放顶煤条件下顶板两带高度探查研究[J]. 煤炭科技,2020,41(1):27−31.
WU Zengqiang,LI Suining,SHI Xiongyi. Probe and research on heights of fracture zone and fault zone of roof in fully-mechanized top coalcaving of super-thick coal seam[J]. Coal Science & Technology Magazine,2020,41(1):27−31.
|
[1] | LI Huaizhan, SUN Jingchao, GUO Guangli, TANG Chao, ZHENG Hui, ZHANG Liangui, MENG Fanzhen. Evolution characteristics and development height prediction method of water-conducting crack zone in thick weak cemented overlying strata[J]. COAL SCIENCE AND TECHNOLOGY, 2025, 53(2): 289-300. DOI: 10.12438/cst.2023-1931 |
[2] | CHEN Qian, HUANG Lianbing. Gas emission prediction from coalface based on Least Absolute Shrinkage and Selection Operator and Least Angle Regression[J]. COAL SCIENCE AND TECHNOLOGY, 2022, 50(7): 171-176. |
[3] | LI Qi, QIN Yujin, GAO Zhongning. Research on height prediction of “two zones” of overburdcn based on BP neural network in Wuyang Mine[J]. COAL SCIENCE AND TECHNOLOGY, 2021, 49(8): 53-59. |
[4] | SONG Guoliang, YANG Xueting, YANG Shaobo. Study on prediction model of alkali metal contamination characteristics during high alkali coal combustion[J]. COAL SCIENCE AND TECHNOLOGY, 2020, 48(2). |
[5] | PAN Hongyu, ZHAO Yunhong, ZHANG Weidong, BAI yun, HAN Yawei. Prediction of surface subsidence with improved BP neural network based on Adaboost[J]. COAL SCIENCE AND TECHNOLOGY, 2019, (2). |
[6] | ZHANG Shike, FANG Hongyuan, GENG Yongqiang. Prediction on characteristic parameters of blasting vibration based genetic BP neural network in coal mine[J]. COAL SCIENCE AND TECHNOLOGY, 2018, (9). |
[7] | QI Qingjie, ZHAO Youxin, LI Xinghua, ZHOU Xinhua. Prediction model of CO emission volume from goaf[J]. COAL SCIENCE AND TECHNOLOGY, 2018, (2). |
[8] | Zhu Lingqi Shao Jingjing Wang Fusheng, . Criterion of initial coal spontaneous combustion with prediction model of concentration ratio of CO2 and CO[J]. COAL SCIENCE AND TECHNOLOGY, 2015, (7). |
[9] | Wang Lei Lin Liang Li Jingjing Tang Dazhen Xu Hao Zhu Wuquan Ren Pengfei, . Method to predict permeability of coal reservoir with BP neural network based on logging information[J]. COAL SCIENCE AND TECHNOLOGY, 2015, (7). |
[10] | MENG Zhao-ping GUO Yan-sheng ZHANG Jji-xing, . Application and Prediction Model of Coalbed Methane Content Based on Logging Parameters[J]. COAL SCIENCE AND TECHNOLOGY, 2014, (6). |
1. |
张奥宇,杨科,池小楼,张杰. 基于GA-BP神经网络岩石单轴抗压强度预测模型研究. 煤. 2025(01): 6-10+17 .
![]() | |
2. |
孔祥国,赵天烁,林海飞,赵鹏翔,王旭,蔡雨初,季鹏飞,和递,李可,徐传玉. 特厚煤层覆岩裂隙-渗流区域演化规律及工程应用. 煤田地质与勘探. 2025(01): 102-113 .
![]() | |
3. |
徐东晶,窦旋,李业,夏志村. 山东矿区矿井导水裂隙带发育高度预测模型研究. 矿业科学学报. 2025(01): 86-94 .
![]() | |
4. |
李怀展,孙兢超,郭广礼,唐超,郑辉,张连贵,孟凡贞. 巨厚弱胶结覆岩导水裂隙带演化特征及发育高度预测方法. 煤炭科学技术. 2025(02): 289-300 .
![]() | |
5. |
李连祥,张会宾,李斌. 煤矿综放工作面导水裂隙带演化规律研究. 陕西煤炭. 2025(06): 32-37 .
![]() | |
6. |
邢生生. 特厚煤层开采覆岩裂隙分布及其对近地表含水层的影响研究. 山西煤炭. 2025(02): 43-49 .
![]() | |
7. |
孙庆先,张勇,陈清通,李宏杰. 我国开采沉陷学70年研究综述及技术展望. 中国矿业. 2024(03): 86-99 .
![]() | |
8. |
刘成勇,宋伟,盛奉天,古文哲,袁超峰,张磊. 强含水层下特厚煤层综放开采导水裂隙带发育高度. 采矿与岩层控制工程学报. 2024(02): 114-124 .
![]() | |
9. |
韩猛,杜莉莉,耿新胜,黄阳,马一多,赵威,甘英杰. 基于响应曲面法近距离煤层群导水裂隙带影响因素分析. 煤炭工程. 2024(05): 114-120 .
![]() | |
10. |
宋世杰,张家杰,杨帅,刘志坚,江宁,陈平,刘汉斌,魏江波,刘露,陈宝灯,李源红. 黄河上中游采煤沉陷区水土流失效应的探索与思考. 绿色矿山. 2024(02): 169-182 .
![]() | |
11. |
林海飞,张宇少,周捷,葛佳琪,李文静,王琳,王锴. 基于SSA-LSTM采动覆岩裂隙带高度预测方法研究. 矿业安全与环保. 2024(03): 8-15 .
![]() | |
12. |
王峰,杨焱钧,王江平,范继超. 澄合矿区导水裂隙带发育高度多元线性回归方法预测. 陕西煤炭. 2024(07): 162-165 .
![]() | |
13. |
田瑞羽. 矿井导水裂隙带发育高度确定及防治水技术探析. 江西煤炭科技. 2024(03): 212-215 .
![]() | |
14. |
刘奇,梁智昊,訾建潇. SMOGN过采样下导水裂隙带高度的MPSO-BP预测模型. 煤田地质与勘探. 2024(11): 72-85 .
![]() | |
15. |
尹鹏飞,李杰,刘思迪. 轩岗矿区2号煤层工作面顶抽巷层位优化研究. 地质灾害与环境保护. 2024(04): 99-104 .
![]() | |
16. |
任雅杰. 莲盛煤矿地下开采对地下水资源影响的预测与分区研究. 山西煤炭. 2023(04): 122-128 .
![]() |