Advance Search
JIANG Yanhang,ZHOU Luhan,HAN Mingxu,et al. Numerical simulation study on the effect of gas extraction in one face and four lanes on the spontaneous combustion of coal remains in the mining area[J]. Coal Science and Technology,2024,52(S1):62−69. DOI: 10.12438/cst.2023-0980
Citation: JIANG Yanhang,ZHOU Luhan,HAN Mingxu,et al. Numerical simulation study on the effect of gas extraction in one face and four lanes on the spontaneous combustion of coal remains in the mining area[J]. Coal Science and Technology,2024,52(S1):62−69. DOI: 10.12438/cst.2023-0980

Numerical simulation study on the effect of gas extraction in one face and four lanes on the spontaneous combustion of coal remains in the mining area

More Information
  • Received Date: July 02, 2023
  • Available Online: June 25, 2024
  • In order to study the “three zones” of spontaneous combustion in gob under different gas treatment conditions of high gas prone to spontaneous combustion and the change law of temperature field distribution, combined with the actual conditions of a high gas prone to spontaneous combustion working surface, a physical model of spontaneous ignition in goaf with “one face and four lanes” was constructed. The oxidation oxygen consumption and heat release parameters of coal samples obtained from temperature programmed experiment were applied to numerical simulation. The influence of different air supply, low and high pumping flow on the “three zones” of spontaneous combustion and temperature field distribution in goaf was studied. The variation of parameters such as maximum width of oxidation zone, area of oxidation zone and maximum temperature point of goaf with air supply, low and high pumping flow was quantitatively analyzed. The results show that in the range of simulation test, increasing air supply, low pumping flow and high pumping flow will cause the increase of air leakage in goaf, which is not conducive to the prevention and control of spontaneous combustion of coal left in goaf. The maximum temperature point does not change significantly (only within the range of 1K), and the influence of the change of high pumping flow rate on the width and area of the oxidation zone and the maximum temperature of the goaf is greater than that of the air supply volume and low pumping flow rate. The maximum width of oxidation zone increases with the increase of air supply, and the maximum temperature of goaf and the area of oxidation zone decrease with the increase of air supply. When the air supply increases from 1600 m3/min to 1900 m3/min, the maximum width of oxidation zone increases by 2 m (74−76 m), and the maximum temperature decreases by 0.1 K (315.38−315.28 K). The oxidation zone area decreased by 180.08 m2 (8 669.49−8 489.41 m2). The maximum width of oxidation zone increases with the increase of low extraction flow rate, the maximum temperature of goaf and the area of oxidation zone increase with the increase of extraction flow rate. When the low extraction flow rate increases from 200 m3/min to 300 m3/min, the maximum width of oxidation zone increases by 2 m (75−77 m). The maximum temperature increased by 0.152 K (315.34−315.492 K), and the oxidation zone area expanded by 51.56 m2 (8 553.79−8 605.35 m2). When the high pumping rate increased from 80 m3/min to 240 m3/min, the maximum width of the oxidation zone remained at about 75 m, and the maximum temperature increased by 0.76 K (315.13−315.89 K).

  • [1]
    黄靖维,任万兴,康增辉. 不同条件下燃煤颗粒物的粒径分布研究[J]. 煤矿安全,2022,53(7):58−63.

    HUANG Jingwei,REN Wanxing,KANG Zenghui. Study on particle size distribution of coal combustion under different conditions[J]. Safety in Coal Mines,2022,53(7):58−63.
    [2]
    桑乃文. 东庞矿21219工作面瓦斯与煤自燃复合灾害防治技术优化模拟研究[D]. 徐州:中国矿业大学,2020.

    SANG Naiwen. Study on optimal simulation of compound disaster prevention and control technology of gas and coal spontaneous combustion in 21219 working face of Dongpang coal mine[D]. Xuzhou:China University of Mining and Technology,2020.
    [3]
    李胜,毕慧杰,罗明坤,等. 高瓦斯综采工作面顶板走向高抽巷布置研究[J]. 煤炭科学技术,2017,45(7):61−67.

    LI Sheng,BI Huijie,LUO Kunming,et al. Study on high level gas drainage gateway layout along roof strike in high gassy mechanized coal mining face[J]. Coal Science and Technology,2017,45(7):61−67.
    [4]
    余照阳. 高瓦斯易自燃采空区流场特征及遗煤氧化特性研究[D]. 徐州:中国矿业大学,2018.

    YU Zhaoyang. Flow field characteristics and residual coal oxidation characteristics of highly gassy and spontaneous combustion prone goaf[D]. Xuzhou:China University of Mining and Technology,2018.
    [5]
    李润求,施式亮,念其锋,等. 近10年我国煤矿瓦斯灾害事故规律研究[J]. 中国安全科学学报,2011,21(9):143−151. doi: 10.3969/j.issn.1003-3033.2011.09.024

    LI Runqiu,SHI Shiliang,NIAN Qifeng,et al. Research on coalmine gas accident rules in China in recent decade[J]. China Safety Science Journal,2011,21(9):143−151. doi: 10.3969/j.issn.1003-3033.2011.09.024
    [6]
    梁运涛,侯贤军,罗海珠,等. 我国煤矿火灾防治现状及发展对策[J]. 煤炭科学技术,2016,44(6):1−6.

    LIANG Yuntao,HOU Xianjun,LUO Haizhu,et al. Development countermeasures and current situation of oal mine fire prevention & extinguishing in China[J]. Coal Science and Technology,2016,44(6):1−6.
    [7]
    王德明. 煤矿热动力灾害及特性[J]. 煤炭学报,2018,43(1):137−142.

    WANG Deming. Thermodynamic disaster in coal mine and its characteristics[J]. Journal of China Coal Society,2018,43(1):137−142.
    [8]
    周福宝. 瓦斯与煤自燃共存研究(Ⅰ):致灾机理[J]. 煤炭学报,2012,37(5):843−849.

    ZHOU Fubao. Study on the coexistence of gas and coal spontaneous combustion (Ⅰ):disaster mechanism[J]. Journal of China Coal Society,2012,37(5):843−849.
    [9]
    张巨峰,施式亮,鲁义,等. 矿井瓦斯与煤自燃共生灾害:耦合关系、致灾机制、防控技术[J]. 中国安全科学学报,2020,30(10):149−155.

    ZHANG Jufeng,SHI Shiliang,LU Yi,et al. Symbiotic disasters of mine gas and coal spontaneous combustion :coupling relationship,disaster mechanism,prevention and control technology[J]. China Safety Science Journal,2020,30(10):149−155.
    [10]
    林柏泉,李庆钊,周延. 煤矿采空区瓦斯与煤自燃复合热动力灾害多场演化研究进展[J]. 煤炭学报,2021,46(6):1715−1726.

    LIN Boquan,LI Qingzhao,ZHOU Yan. Research advances about multi-field evolution of coupled thermodynamic disasters in coal mine goaf[J]. Journal of China Coal Society,2021,46(6):1715−1726.
    [11]
    李宗翔,吴强,肖亚宁. 采空区瓦斯涌出与自燃耦合基础研究[J]. 中国矿业大学学报,2008(1):38−42.

    LI Zongxiang,WU Qiang,XIAO Yaning. Numerical simulation of coupling mechanism of coal spontaneous combustion and gas Effusion in goaf[J]. Journal of China University of Mining & Technology,2008(1):38−42.
    [12]
    张春,题正义,李宗翔. 综放采空区遗煤自燃的三维数值模拟研究[J]. 中国安全科学学报,2013,23(5):15−21.

    ZHANG Chun,TI Zhengyi,LI Zongxiang. Three-dimension numerical simulation of residual coal spontaneous combustion in goaf in fully mechanized caving face[J]. China Safety Science Journal,2013,23(5):15−21.
    [13]
    王继仁,张英,黄戈,等. 采空区不同瓦斯抽采方法与自燃合理平衡的数值模拟[J]. 中国安全生产科学技术,2015,11(8):26−32.

    WANG Jiren,ZHANG Ying,HUANG Ge,et al. Numerical simulation on reasonable balance between different gas drainage methods and spontaneous combustion in gob area[J]. Journal of Safety Science and Technology,2015,11(8):26−32.
    [14]
    贺飞,王继仁,郝朝瑜,等. 浅埋近距离煤层内错布置采空区自燃危险区域研究[J]. 中国安全生产科学技术,2016,12(2):68−72.

    HE Fei,WANG Jiren,HAO Zhaoyu,et al. Study on dangerous area of goaf spontaneous combustion in shallow and close distance coal seams with inner crossing layout[J]. Journal of Safety Science and Technology,2016,12(2):68−72.
    [15]
    邸帅,王继仁,郝朝瑜,等. 多场耦合作用下瓦斯与煤自燃协同预防数值模拟[J]. 安全与环境学报,2018,18(2):497−503.

    DI Shuaim,WANG Jiren,HAO Zhaoyu,et al. Numerical simulation of synergistic prevention from the gas and coal spontaneous combustion under multifield coupling[J]. Journal of Safety and Environment,2018,18(2):497−503.
    [16]
    信亚男. 高抽巷抽采条件下采空区瓦斯与煤自燃耦合灾害的研究[D]. 徐州:中国矿业大学,2019.

    XIN Yanan. Study on coupling disaster of gas and coal spontaneous combustion in goaf under the condition of high drainage roadway [D]. Xuzhou:China University of Mining and Technology,2019.
    [17]
    褚廷湘,刘春生,余明高,等. 高位巷道瓦斯抽采诱导浮煤自燃影响效应[J]. 采矿与安全工程学报,2021,29(3):421−428.

    CHU Tingxiang,LIU Chunsheng,YU Minggao,et al. Influential effect on spontaneous combustion of float coal induced by gas extraction in upper roadway[J]. Journal of Mining & Safety Engineering,2021,29(3):421−428.
    [18]
    褚廷湘,姜德义,余明高,等. 顶板巷瓦斯抽采诱导煤自燃机制及安全抽采量研究[J]. 煤炭学报,2016,41(7):1701−1710.

    CHU Tingxiang,JIANG Deyi,YU Minggao,et al. Study on mechanism of inducing coal spontaneous combustion and safe gas extraction volume under roof tunnel gas extraction[J]. Journal of China Coal Society,2016,41(7):1701−1710.
    [19]
    裴晓东,张人伟,马伟南. 高瓦斯易自燃采空区瓦斯与煤自燃耦合模拟研究[J]. 煤炭科学技术,2016,44(4):73−77.

    PEI Xiaodong,ZHANG Renwei,MA Weinan. Study on coupling simulation of gas and coal spontaneous combustion in high gassy and easy spontaneous combustion goaf[J]. Coal Science and Technology,2016,44(4):73−77.
    [20]
    韩明旭. 阳煤五矿高瓦斯矿井遗煤自燃特征及CO2防灭火数值模拟研究[D]. 阜新:辽宁工程技术大学,2022.

    HAN Mingxu. Numerical simulation study on spontaneous combustion characteristics of residual coal and CO2 fire prevention and extinguishing technology at high gassy mine in Yangmei Wu coal mine[D]. Fuxin:Liaoning Technical University,2022.
    [21]
    汪腾蛟,聂朝刚,杨小彬,等. 考虑温度变化的采空区瓦斯抽采数值模拟[J]. 煤炭科学技术,2021,49(7):85−94.

    WANG Tengjiao,NIE Chaogang,YANG Xiaobin,et al. Numerical simulation of gas drainage in gob considering temperature change[J]. Coal Science and Technology,2021,49(7):85−94.
    [22]
    李宗翔,衣刚,武建国,等. 基于“O”型冒落及耗氧非均匀采空区自燃分布特征[J]. 煤炭学报,2012,37(3):484−489.

    LI Zongxiang,YI Gang,WU Jianguo,et al. Study on spontaneous combustion distribution of goaf based on the “O” type risked falling and non-uniform oxygen[J]. Journal of China Coal Society,2012,37(3):484−489.
    [23]
    高光超,李宗翔,张春,等. 基于三维“O”型圈的采空区多场分布特征数值模拟[J]. 安全与环境学报,2017,17(3):931−936

    GAO Guangchao,LI Zongxiang,ZHANG Chun,et al. Numerical simulation multi-field distribution characteristic features of the goaf based on 3D“O”type circle[J]. Journal of Safety and Environment,2017,17(3):931−936.
    [24]
    朱红青,霍雨佳,方书昊,等. 寺家庄矿综采工作面顶板走向高抽巷合理层位研究[J]. 煤炭科学技术,2021,49(1):234−239.

    ZHU Hongqing,HUO Yujia,FANG Shuhao,et al. Study on the reasonable stratum of high-drainage roadway with roofstrike of fully-mechanized working face in Sijiazhuang Mine[J]. Coal Science and Technology,2021,49(1):234−239.
  • Related Articles

    [1]KANG Hongpu, FENG Yanjun, ZHANG Zhen, ZHAO Kaikai, WANG Peng. Hydraulic fracturing technology with directional boreholes for strata control in underground coal mines and its application[J]. COAL SCIENCE AND TECHNOLOGY, 2023, 51(1): 31-44. DOI: 10.13199/j.cnki.cst.2022-2004
    [2]ZHANG Yujun, ZHANG Zhiwei. Research status and development trend of mining overburden failurelaw and control technology[J]. COAL SCIENCE AND TECHNOLOGY, 2020, 48(11): 85-97.
    [3]WANG Feng, CHEN Shaojie, XU Jialin, MA Bo, DING Xiyang, LIU Zunxin. Research on ground control based on arch structure in unconsolidated layers theory[J]. COAL SCIENCE AND TECHNOLOGY, 2020, 48(9): 130-138.
    [4]WANG Cunfei, RONG Yao. Concept,architecture and key technologies for transparent longwall face[J]. COAL SCIENCE AND TECHNOLOGY, 2019, (7).
    [5]Sun Xikui Li Xiushan Shi Xianyuan Chang Qingliang Li Xiangyang, . Study on mine strata behavior with full backfill effect of paste backfill in coal mine[J]. COAL SCIENCE AND TECHNOLOGY, 2017, (1).
    [6]SUN Sen TANG Shao-an, . Principle and Practices on Surrounding Rock Control of Three Soft Seam[J]. COAL SCIENCE AND TECHNOLOGY, 2014, (12).
    [7]Resolution and Analysis on Failure Depth of Face End Floor in Coal Mining Face[J]. COAL SCIENCE AND TECHNOLOGY, 2011, (3).
  • Cited by

    Periodical cited type(43)

    1. 李小鹏, 刘少伟, 付孟雄, 何亚飞, 张建英, 郭重托. 浅埋采空区下特厚煤层回采覆岩破坏特征研究. 采矿与安全工程学报. 2025(04)
    2. 刘超. 采动影响下断层活化致围岩失稳破坏机理研究. 陕西煤炭. 2025(07)
    3. 黄雨童, 臧传伟, 白雍瑞, 张帆. 回采巷道非对称底鼓机制与切槽卸压控制技术. 工矿自动化. 2025(06)
    4. 朱志洁, 王鹏, 李瑞琪, 秦洪岩, 史庆稳, 陈昆. 特厚煤层综放工作面底鼓机制及控制技术. 中国安全科学学报. 2025(05)
    5. 李俊平,管婷婷,王海泉. 高位巷控制爆破切槽放顶关键参数设计及矿压运移模拟. 安全与环境学报. 2025(02): 488-497 .
    6. 孙红发. 两柱大采高铺网液压支架设计研究. 矿山机械. 2025(02): 74-77 .
    7. 李佳臻,杨志涛,刘刚,傅永帅,张峰. 采动覆岩动态运移对地表沉陷的影响. 黑龙江科技大学学报. 2025(01): 26-31 .
    8. 翟新献,郭钊洋,方建厂,张志勇,赵晓凡. 综放开采覆岩变形分区和矿压显现模拟研究. 煤炭科学技术. 2025(01): 96-106 . 本站查看
    9. 连会青,晏涛,尹尚先,徐斌,康佳,周旺,闫国成. 基于透明水文地质模型的工作面顶板水害预警研究. 煤炭科学技术. 2025(01): 259-271 . 本站查看
    10. 谭云亮,张修峰,范德源,刘学生,朱斯陶,牟宗龙,陈洋. 沿空侧向覆岩结构改性防冲机理与实践. 煤炭学报. 2025(01): 209-223 .
    11. 郝光生,王哲. 切顶卸压留巷工艺方案设计与优化研究. 能源与节能. 2025(03): 292-295+299 .
    12. 张村,任赵鹏,何军,马健起. 考虑厚硬岩层的采场覆岩压力拱模型及其应用. 中国矿业. 2025(03): 113-124+112 .
    13. 苏杰,姚士茂. 多位厚层顶板双巷工作面矿压显现规律研究. 中国矿业. 2025(03): 153-164 .
    14. 郭文兵,吴东涛. 我国煤矿开采技术发展与人才培养需求分析. 河南理工大学学报(社会科学版). 2025(03): 92-103 .
    15. 张闯,杜盼,陈建崇,姚新宇,王博,杨雨默,李瞻领,马耀荣,常震坤,许良珂. 弱胶结含砾岩层覆岩断裂及应力变化特征研究. 煤矿安全. 2025(05): 121-130 .
    16. 林韩祥,冯雪峰,张强勇,段抗,张修峰,刘传成,陈长鹏,赵钰. 高位厚硬岩层破断力学机制分析. 岩土力学. 2025(04): 1264-1277 .
    17. 李豫波,马平云. 龙湖煤矿沿空留巷相似材料模拟试验研究. 河南城建学院学报. 2024(01): 26-33 .
    18. 王家臣,刘云熹,李杨,王蕾. 矿业系统工程60年发展与展望. 煤炭学报. 2024(01): 261-279 .
    19. 贺海鸿,张宁,王冰,王常彬,曹安业. 深部复杂覆岩结构煤层开采冲击地压致灾层位判识研究. 煤炭技术. 2024(05): 56-59 .
    20. 冉启灿,梁运培,邹全乐,张碧川. 倾斜煤层群覆岩“三场”非对称特征及靶向抽采机制. 煤炭科学技术. 2024(04): 177-192 . 本站查看
    21. 张平松,余宏庆,许时昂,吴海波. 公路路基变形破坏及其测试技术研究进展与展望. 科学技术与工程. 2024(15): 6134-6145 .
    22. 曹东京,刘国磊,梁文昭,郝喜庆,田利华,薛建军. 高位巨厚砾岩对工作面开采地表沉降控制机理. 煤矿安全. 2024(06): 141-150 .
    23. 谢道雷,江兴洪,韩承豪,王凯,尹会永,闫久雷. 基于回转下沉量的导水裂隙带发育高度预测. 煤矿安全. 2024(06): 176-183 .
    24. 孙文超,王兆会,李强,王伟,曹鹏,徐虎. 深部坚硬顶板工作面冲击地压多元协同防控技术. 岩石力学与工程学报. 2024(07): 1736-1750 .
    25. 张思达,高翔,刘龙吉. 瞬变电磁勘探技术在采空区空间探测中的应用. 陕西煤炭. 2024(08): 78-83 .
    26. 宋高峰,黄鹏,李鹤鹤,昝明惠,孔德中,张鹏飞. 基于能量法的工作面端面冒顶机理及“支架-围岩”耦合关系试验研究. 煤炭科学技术. 2024(07): 11-22 . 本站查看
    27. 任霄洋,郭俊庆,张百胜,郗泽涛,卢春生,李恒忠. 多层坚硬顶板动压巷道矿压显现规律及深浅孔组合爆破切顶控制技术研究. 矿业研究与开发. 2024(09): 48-55 .
    28. 李彦忠,毛清华,蒲晓飞. 基于优化BP神经网络的矿压规律预测方法研究. 煤炭技术. 2024(10): 38-43 .
    29. 孙斌杨,袁亮,张平松,吴荣新. 巨厚砾岩下采场覆岩运移与离层演化的光-电感知试验研究. 中国矿业大学学报. 2024(05): 977-992 .
    30. 欧阳振华,刘洋,李春雷,史庆稳,李文帅,易海洋,秦洪岩,张宁博. 多次采掘扰动煤体力学特性演化规律试验研究. 煤田地质与勘探. 2024(10): 72-84 .
    31. 蔡红财,孔德中,张启,左宇军,吴桂义,周杨. 近距离煤层群重复采动下裂隙分布特征对端面顶板稳定性的影响研究. 矿业研究与开发. 2024(11): 56-65 .
    32. 李猛,王兆会,孙文超,吴传平,孙少龙,曹鹏,孙成磊. 深部坚硬顶板充填工作面支架–围岩耦合作用与支护参数优化. 岩石力学与工程学报. 2024(11): 2753-2765 .
    33. 李志,杨栋,贾毅超. 深厚煤层开采过程中覆岩运移演变机理及矿压管控研究. 矿业研究与开发. 2024(12): 68-75 .
    34. 肖同强,任勇辉,神文龙,贾义雪,许磊,刘发义,代晓亮. 深部高瓦斯强动压巷道切顶卸压机制及技术研究. 采矿与岩层控制工程学报. 2024(06): 130-144 .
    35. 李国平,王章,张骥. 白象山铁矿盘区采矿进路巷道支护优化研究. 现代矿业. 2024(12): 111-115+142 .
    36. 杨柯,熊祖强,王春,付斌. 综采工作面液压支架阻力精准采集及分析技术研究. 中国煤炭. 2024(12): 131-139 .
    37. 杜臻,张茂省,冯立,刘颢,张勖,郭迟辉,王耀,李华华. 鄂尔多斯盆地煤炭采动的生态系统响应机制研究现状与展望. 西北地质. 2023(03): 78-88 .
    38. 关书方. 基于数据模型驱动的液压支架压力预测分析. 陕西煤炭. 2023(04): 85-90 .
    39. 王国法,庞义辉,许永祥,孟令宇,韩会军. 厚煤层智能绿色高效开采技术与装备研发进展. 采矿与安全工程学报. 2023(05): 882-893 .
    40. 何满潮. 无煤柱自成巷开采理论与110工法. 采矿与安全工程学报. 2023(05): 869-881 .
    41. 翟新献,赵晓凡,郭钊洋,任柱安. 综放开采上覆巨厚砾岩层变形垮落冲击相似模拟研究. 采矿与安全工程学报. 2023(05): 1018-1030 .
    42. 朱卫兵,王晓振,谢建林,赵波智,宁杉,许家林. 矿山采动覆岩内部岩移原位监测技术进展及应用. 工矿自动化. 2023(09): 1-12 .
    43. 陈春雷. 煤矿开采中的岩层控制技术研究与应用. 内蒙古煤炭经济. 2023(19): 124-126 .

    Other cited types(49)

Catalog

    Article views (39) PDF downloads (20) Cited by(92)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return