KANG Hongpu,FENG Yanjun,ZHANG Zhen,et al. Hydraulic fracturing technology with directional boreholes for strata control in underground coal mines and its application[J]. Coal Science and Technology,2023,51(1):31−44
. DOI: 10.13199/j.cnki.cst.2022-2004Citation: |
KANG Hongpu,FENG Yanjun,ZHANG Zhen,et al. Hydraulic fracturing technology with directional boreholes for strata control in underground coal mines and its application[J]. Coal Science and Technology,2023,51(1):31−44 . DOI: 10.13199/j.cnki.cst.2022-2004 |
The application of hydraulic fracturing technology on rock fracturing for hard and complete roof, and destressing for roadways with high stresses is increasingly widespread. Based on a top coal caving working face with extra-thick coal seam and complete roof layers in the Caojiatan coal mine in Shaanxi Province, the roof rock geomechanical measurements, compressibility tests, theory of hydraulic fracture propagation, and 3D numerical simulation were carried out, and the determination approaches for fracturing rock horizon above a working face, fracturing borehole layout and parameters, and fracturing technology were put forward. The underground industrial trial and a comprehensive surface microseismic monitoring with actual time were conducted, and the spatial distribution characteristics of hydraulic fractures in roof were obtained. Meanwhile, shield resistance, periodic weighting step distance and duration distance, weighting dynamic load coefficient, and roof breaking energy were monitored and analyzed, and the hydraulic fracturing effect was synthetically evaluated. A complete set of technology for hydraulic fracturing with directional boreholes in underground coal mines were preliminarily established, which includes determination of fracturing rock horizon and parameter design, fracturing technology and equipment with directional boreholes, monitoring of hydraulic fracture spatial distribution, and comprehensive evaluation of hydraulic fracturing effect. The underground trial pointed out that: on the in-situ stress regime in the Caojiatan coal mine, that is the minimum principal stress is vertical stress, the hydraulic fractures were mainly horizontal fractures with a propagation distance of about 80 m on both sides of boreholes, the hard and complete roofs above the working face were effectively weakened, and regional roof reconstruction was achieved. The intensive ground pressure appearance of the working face was obviously reduced in the fracturing area, and production safety was ensured. Finally, the existing issues associated with hydraulic fracturing were discussed, and technical developments were envisaged.
[1] |
康红普,冯彦军. 煤矿井下水力压裂技术及在围岩控制中的应用[J]. 煤炭科学技术,2017,45(1):1−9. doi: 10.13199/j.cnki.cst.2017.01.001
KANG Hongpu,FENG Yanjun. Hydraulic fracturing technology and its applications in strata control in underground coal mines[J]. Coal Science and Technology,2017,45(1):1−9. doi: 10.13199/j.cnki.cst.2017.01.001
|
[2] |
康红普,姜鹏飞,冯彦军,等. 煤矿巷道围岩卸压技术及应用[J]. 煤炭科学技术,2022,50(6):1−15. doi: 10.13199/j.cnki.cst.2022-0467
KANG Hongpu,JIANG Pengfei,FENG Yanjun,et al. Destressing technology for rock around coal mine roadways and its application[J]. Coal Science and Technology,2022,50(6):1−15. doi: 10.13199/j.cnki.cst.2022-0467
|
[3] |
KANG Hongpu,LYU Huawen,GAO Fuqiang,et al. Understanding mechanisms of destressing mining-induced stresses using hydraulic fracturing[J]. International Journal of Coal Geology,2018,196:19−28. doi: 10.1016/j.coal.2018.06.023
|
[4] |
冯彦军, 康红普. 定向水力压裂控制煤矿坚硬难垮顶板试验[J]. 岩石力学与工程学报, 2012, 31(6): 1148-1155.
FENG Yanjun, KANG Hongpu. Test on hard and stable roof control by means of direction hydraulic fracturing in coal mine [J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(6): 1148-1155.
|
[5] |
赵凯凯. 坚硬顶板区域水力压裂裂缝三维扩展机理研究[D]. 北京: 煤炭科学研究总院, 2021.
ZHAO Kaikai. Three-dimensional propagation of hydraulic fracture from regional fracturing in hard roof[D]. Beijing: China Coal Research Institute, 2021.
|
[6] |
ZHAO Kaikai,STEAD Doug,KANG Hongpu,et al. Investigating the interaction of hydraulic fracture with pre-existing joints based on lattice spring modeling[J]. Computers and Geotechnics,2020,122:103534. doi: 10.1016/j.compgeo.2020.103534
|
[7] |
程利兴. 千米深井巷道围岩水力压裂应力转移机理研究及应用[D]. 北京: 中国矿业大学(北京), 2021.
CHENG Lixing. Research and application of hydraulic fracturing stress transfer mechanism in surrounding rock of kilometer deep mine roadway[D]. Beijing: Beijing University of Mining & Technology- Beijing, 2021.
|
[8] |
黄炳香,赵兴龙,陈树亮,等. 坚硬顶板水压致裂控制理论与成套技术[J]. 岩石力学与工程学报,2017,36(12):2954−2970. doi: 10.13722/j.cnki.jrme.2017.0078
HUANG Bingxiang,ZHAO Xinglong,CHEN Shuliang,et al. Theory and technology of controlling hard roof with hydraulic fracturing in underground mining[J]. Chinese Journal of Rock Mechanics and Engineering,2017,36(12):2954−2970. doi: 10.13722/j.cnki.jrme.2017.0078
|
[9] |
于 斌,高 瑞,夏彬伟,等. 大空间坚硬顶板地面压裂技术与应用[J]. 煤炭学报,2021,46(3):800−811.
YU Bin,GAO Rui,XIA Binwei,et al. Ground fracturing technology and application of hard roof in large space[J]. Journal of China Coal Society,2021,46(3):800−811.
|
[10] |
夏永学,陆 闯,杨光宇,等. 坚硬顶板孔内磨砂射流轴向切缝及压裂试验研究[J]. 采矿与岩层控制工程学报,2020,2(3):033522.
XIA Yongxue,LU Chuang,YANG Guangyu,et al. Experimental study on axial fracture cutting and fracturing of abrasive jet in boreholes within hard rock roofs[J]. Journal of Mining and Strata Control Engineering,2020,2(3):033522.
|
[11] |
张 晓. 综采工作面水力压裂初次放顶技术研究[J]. 煤炭科学技术,2017,45(7):23−26. doi: 10.13199/j.cnki.cst.2017.07.005
ZHANG Xiao. Study on hydraulic fracturing technology in initial caving of fully-mechanized coal mining face[J]. Coal Science and Technology,2017,45(7):23−26. doi: 10.13199/j.cnki.cst.2017.07.005
|
[12] |
冯彦军, 周瑜苍, 刘 勇, 等. [J].水力压裂在酸刺沟煤矿初次放顶中的应用[J]. 煤矿开采,2016(5):75−78.
FENG Yanjun,ZHOU Yucang,LIU Yong,et al. Application of hydraulic fracturing in first roof caving of suancigou coal mine[J]. Coal Mining Technology,2016(5):75−78.
|
[13] |
李中伟,薛旭辉,郝登云. 干河煤矿卸支耦合动压巷道围岩控制技术研究[J]. 煤炭工程,2019,51(11):51−54.
LI Zhongwei,XUE Xuhui,HAO Dengyun. Surrounding rock control technology of pressure relief and support coupling dynamic pressure roadway in Ganhe Coal Mine[J]. Coal Engineering,2019,51(11):51−54.
|
[14] |
吴拥政,康红普. 煤柱留巷定向水力压裂卸压机理及试验[J]. 煤炭学报,2017,42(5):1130−1137. doi: 10.13225/j.cnki.jccs.2016.1677
WU Yongzheng,KANG Hongpu. Pressure relief mechanism and experiment of directional hydraulic fracturing in reused coal pillar roadway[J]. Journal of China Coal Society,2017,42(5):1130−1137. doi: 10.13225/j.cnki.jccs.2016.1677
|
[15] |
杨俊哲,王振荣,吕情绪,等. 坚硬顶板超前区域治理技术在神东布尔台煤矿的应用[J]. 煤田地质与勘探,2022,50(2):17−23. doi: 10.12363/issn.1001-1986.21.03.0119
YANG Junzhe,WANG Zhenrong,LYU Qingxu,et al. Application of advanced regional treatment technology of hard roof in Buertai Coal Mine of Shendong Coal Group[J]. Coal Geology & Exploration,2022,50(2):17−23. doi: 10.12363/issn.1001-1986.21.03.0119
|
[16] |
刘曰武,高大鹏,李 奇,等. 页岩气开采中的若干力学前沿问题[J]. 力学进展,2019,49:201901. doi: 10.6052/1000-0992-17-020
LIU Yuewu,GAO Dapeng,LI Qi,et al. Mechanical frontiers in shale-gas development[J]. Advances in Mechanics,2019,49:201901. doi: 10.6052/1000-0992-17-020
|
[17] |
史 璨,林伯韬. 页岩储层压裂裂缝扩展规律及影响因素研究探讨[J]. 石油科学通报,2021,6(1):92−113. doi: 10.3969/j.issn.2096-1693.2021.01.008
SHI Can,LIN Botao. Principles and influencing factors for shale formations[J]. Petroleum Science Bulletin,2021,6(1):92−113. doi: 10.3969/j.issn.2096-1693.2021.01.008
|
[18] |
侯振坤,程汉列,海金龙,等. 页岩水力压裂裂缝起裂和扩展断裂力学模型[J]. 长江科学院院报,2020,37(5):99−107. doi: 10.11988/ckyyb.20190058
HOU Zhenkun,CHENG Hanlie,HAI Jinlong,et al. Fracture mechanics model of the initiation and growth of hydraulic fissures[J]. Journal of Yangtze River Scientific Research Institute,2020,37(5):99−107. doi: 10.11988/ckyyb.20190058
|
[19] |
张士诚,陈 铭,马新仿,等. 水力压裂设计模型研究进展与发展方向[J]. 新疆石油天然气,2021,17(3):67−73. doi: 10.3969/j.issn.1673-2677.2021.03.012
ZHANG Shicheng,CHEN Ming,MA Xinfang,et al. Research progress and development direction of hydro fracturing design models[J]. Xinjiang Oil & Gas,2021,17(3):67−73. doi: 10.3969/j.issn.1673-2677.2021.03.012
|
[20] |
赵凯凯,张 镇,李文洲,等. 基于XSite的钻孔起裂水力裂缝三维扩展研究[J]. 岩土工程学报,2021,43(8):1483−1491.
ZHAO Kaikai,ZHANG Zhen,LI Wenzhou,et al. Three-dimensional simulation of hydraulic fracture from a borehole using XSite[J]. Chinese Journal of Geotechnical Engineering,2021,43(8):1483−1491.
|
[21] |
HENG Shuai,LI Xianzhong,LIU Xiao,et al. Experimental study on the mechanical properties of bedding planes in shale[J]. Journal of Natural Gas Science and Engineering,2020,76:103161. doi: 10.1016/j.jngse.2020.103161
|
[22] |
芮拥军. 地面微地震水力压裂监测可行性分析[J]. 物探与化探,2015,39(2):341−345. doi: 10.11720/wtyht.2015.2.21
RUI Yongjun. Feasibility analysis of surface micro-seismic hydraulic fracturing monitoring[J]. Geophysical and Geochemical Exploration,2015,39(2):341−345. doi: 10.11720/wtyht.2015.2.21
|
[23] |
CHAMBERS K,KENDALL J M,BRANDSBERG-DAHL S,et al. Testing the ability of surface arrays to monitor microseismic activity[J]. Geophysical Prospecting,2010,58(5):821−830. doi: 10.1111/j.1365-2478.2010.00893.x
|
[24] |
EISNER L,HULSEY B J,DUNCAN P,et al. Comparison of surface and borehole locations of induced seismicity[J]. Geophysical Prospecting,2010,58(5):809−820. doi: 10.1111/j.1365-2478.2010.00867.x
|
[25] |
梁北援,冷传波. 微破裂向量扫描原理的研发进展[J]. 地球物理学进展,2016,31(4):1620−1627.
LIANG Beiyuan,LENG Chuanbo. Development of vector scanning for microseismic[J]. Progress in Geophysics,2016,31(4):1620−1627.
|
[26] |
王维波,周瑶琪,春 兰. 地面微地震监测SET震源定位特性研究[J]. 中国石油大学学报(自然科学版),2012,36(5):45−50.
WANG Weibo,ZHOU Yaoqi,CHUN Lan. Characteristics of source localization by seismic emission tomgraphy for surface based on microseismic monitoring[J]. Journal of China University of Petroleum(Edition of Natural Science),2012,36(5):45−50.
|
[27] |
李晓斌,杨振威,赵秋芳,等. 微地震双差定位成像技术及煤层水力压裂的应用[J]. 煤炭学报,2019,44(S1):205−213. doi: 10.13225/j.cnki.jccs.2018.1280
LI Xiaobin,YANG Zhenwei,ZHAO Qiufang,et al. Hydraulic fracture in coalbed methane drilling using microseism double-difference tomography method[J]. Journal of China Coal Society,2019,44(S1):205−213. doi: 10.13225/j.cnki.jccs.2018.1280
|
[28] |
闫江平,庞长庆,段建华,等. 煤矿井下水力压裂范围微震监测技术及其影响因素[J]. 煤田地质与勘探,2019,47(S1):92−97. doi: 10.3969/j.issn.1001-1986.2019.S1.018
YAN Jiangping,PANG Zhangqing,DUAN Jianhua,et al. Microseismic monitoring of underground hydraulic fracturing range in coal seam and analysis of influencing factors[J]. Coal Geology & Exploration,2019,47(S1):92−97. doi: 10.3969/j.issn.1001-1986.2019.S1.018
|
[29] |
李 楠,王恩元,GE Mao-chen. 微震监测技术及其在煤矿的应用现状与展望[J]. 煤炭学报,2017,42(S1):83−96. doi: 10.13225/j.cnki.jccs.2016.0852
LI Nan,WANG Enyuan,GE Maochen. Microseismic monitoring technique and its applications at coal mines: present status and future prospects[J]. Journal of China Coal Society,2017,42(S1):83−96. doi: 10.13225/j.cnki.jccs.2016.0852
|
1. |
石垚,汪占领,程利兴,徐世达. 煤矿水力压裂巷道卸压技术应用及效果评价. 岩石力学与工程学报. 2025(02): 459-471 .
![]() | |
2. |
亓佳利,李伟清,和志永,韩金明,张建,张假妮,卢绪涛,王怀远,李长青. 布孔参数对导向缝槽-静态膨胀协同致裂效果的影响规律研究. 煤矿安全. 2025(03): 127-136 .
![]() | |
3. |
谭毅,王宇,何满潮,李辉,郭文兵,李林猫,刘伟东,张少普. 深埋特厚煤层坚硬顶板多维分段水力压裂控冲减损技术. 煤炭学报. 2025(02): 794-809 .
![]() | |
4. |
赵凯凯,朱凯雄,冯彦军,孙晓冬,郑仰发,王鹏,王宇. 煤矿井下水平钻孔压裂裂缝起裂特征研究. 煤炭工程. 2025(03): 134-142 .
![]() | |
5. |
王想刚,贺虎,张世范,薛生华,贺永康,牛鑫,骆宇. 空间孤岛岩柱区特厚煤层整体卸压防冲-防突协同控制技术. 煤矿安全. 2025(05): 69-77 .
![]() | |
6. |
李连崇,李鑫睿,牟文强,韩云春,张永树. 长钻孔近断层注浆浆液劈裂偏转扩散诱导机理研究. 煤矿安全. 2025(05): 159-171 .
![]() | |
7. |
刘江斌,黄志增,刘前进,张震,韩存地,蔺星宇,马镕山,赵振. 10 m超大采高工作面煤壁片帮“支-卸”协同防控原理. 煤炭学报. 2025(04): 1965-1978 .
![]() | |
8. |
王锐,徐刚,康红普,张震,雷亚军,冯彦军,马英,黄志增,刘前进,刘晓刚,蔺星宇,马镕山,赵振,李正杰. 曹家滩煤矿10 m超大采高工作面采场围岩控制技术. 煤炭学报. 2025(04): 1935-1950 .
![]() | |
9. |
康红普,雷亚军,赵福堂,徐刚,李增林,李明忠,王锐,黄志增,刘江斌,马英,韩存地,冯彦军,张震,张金虎,任建超,宋业杰,曾明胜,程利兴. 特厚煤层10 m超大采高综采关键技术及装备. 煤炭学报. 2025(04): 1849-1875 .
![]() | |
10. |
雷亚军,冯彦军,康红普,赵福堂,尚晓光,王锐,王鹏,张震,任建超,赵凯凯,郑仰发,刘晓刚. 超大采高工作面厚硬顶板压裂卸压技术研究及应用. 煤炭学报. 2025(04): 1907-1934 .
![]() | |
11. |
李然,王初亮,刘波,冯彦军,姜鹏飞,陈荣明,陈敬斌,陈卓,王大龙,卢海承,郭宗凯,曹田泽,于远征,王超. 兆瓦级煤矿井下压裂泵系统的研制及应用. 煤炭科学技术. 2025(05): 372-380 .
![]() | |
12. |
康红普,冯彦军,赵凯凯. 煤矿岩层压裂技术与装备的发展方向. 采矿与岩层控制工程学报. 2024(01): 5-8 .
![]() | |
13. |
缑晓锋,杨飞,窦成义,郑文龙,和递,孔祥国. 特厚煤层定向长钻孔水力压裂瓦斯抽采技术及应用. 陕西煤炭. 2024(02): 65-69 .
![]() | |
14. |
温志强,陈学习,金霏阳,陈星宇. 高应力松软突出煤层定向长钻孔水力冲孔技术研究. 煤炭技术. 2024(03): 154-159 .
![]() | |
15. |
郑纪峰,李啸天. 厚硬顶板隅角悬顶分段多次水力压裂技术研究. 煤炭技术. 2024(03): 21-25 .
![]() | |
16. |
石垚,雷瀚,杨新路,徐世达. 煤矿坚硬顶板灾害水力压裂防治技术监测及评估. 煤炭工程. 2024(02): 122-130 .
![]() | |
17. |
邢菲菲,李海宏,李明. 动压巷道水力压裂切顶卸压技术研究与应用. 能源与环保. 2024(02): 248-255 .
![]() | |
18. |
宋振骐,文志杰,蒋宇静,蒋金泉,石永奎. 采动力学与岩层控制关键理论及工程应用. 煤炭学报. 2024(01): 16-35 .
![]() | |
19. |
韩珂,王海军. 强冲击地压矿井煤层顶板覆岩结构研究——以孟村煤矿为例. 中国煤炭地质. 2024(03): 47-59 .
![]() | |
20. |
滕腾,贾文建,易鹏,赵毅鑫,朱笑颜,徐铎. 微波热力冲击下硬脆砂岩冲击倾向性演化规律试验研究. 矿业科学学报. 2024(02): 209-216 .
![]() | |
21. |
胡善超,韩金明,黄俊鸿,平立芬,程亚飞,高志豪,郭世豪,杨磊. 套筒压裂作用下岩石细观裂隙与能量演化规律探究. 煤炭科学技术. 2024(02): 79-91 .
![]() | |
22. |
刘波. 煤矿井下水力压裂自动控制系统设计. 工矿自动化. 2024(03): 6-13 .
![]() | |
23. |
陈立伟,边乐,王东杰,郑浩阁,赵占川. 水分对CH_4和CO_2在煤中竞争吸附特性影响研究. 煤炭科学技术. 2024(04): 243-254 .
![]() | |
24. |
崔伟杰,荆亚东,李峰. 卸压条件下松软煤层水力造穴瓦斯治理技术及效果分析. 煤炭技术. 2024(06): 194-199 .
![]() | |
25. |
郭铭,来甲,许聪,张扬. 陕北煤矿坚硬顶板井下分段水力压裂技术研究与应用. 内蒙古煤炭经济. 2024(08): 145-147 .
![]() | |
26. |
王平,冯锦鹏,赵彦成,钮涛,刘国锋. TDS智能干选系统分选灵活性智能控制技术. 工矿自动化. 2024(S1): 174-178 .
![]() | |
27. |
高晓进,张震,黄志增,蔺星宇,薛吉胜,庞立宁. 深井直覆硬厚顶板侧向破断模式及采动应力响应特征研究. 岩土力学. 2024(08): 2450-2461 .
![]() | |
28. |
胡善超,韩金明,程亚飞,亓佳利,黄俊鸿,高志豪,郭世豪,杨磊. 多孔套筒定向压裂力学机制及影响因素分析. 煤炭学报. 2024(08): 3366-3380 .
![]() | |
29. |
翁明月,苏士杰,孙如达,谢非,丁国利,夏永学. 多关键层窄煤柱冲击地压发生机理与三级协同防治技术. 煤炭学报. 2024(S1): 45-56 .
![]() | |
30. |
卜宪武,陈志杰. 水力压裂初次放顶技术在厚顶板综采面的应用. 晋控科学技术. 2024(05): 52-56 .
![]() | |
31. |
刘俊旭. 棋盘井煤矿110901工作面末采期切顶卸压技术研究. 能源技术与管理. 2024(05): 54-57 .
![]() | |
32. |
徐刚,张震,张春会,范志忠,卢振龙,黄志增,陆闯,薛吉胜,王传朋,陈法兵,李岩,刘前进,李正杰,孙晓东,蔺星宇,马镕山. 我国煤矿开采工作面顶板灾害及防治技术研究现状. 采矿与岩层控制工程学报. 2024(05): 16-41 .
![]() | |
33. |
陈小磊,孙宁旭,常鹏帅. 厚硬顶板水力压裂技术研究及应用. 山东煤炭科技. 2024(10): 143-147+153 .
![]() | |
34. |
王宾昌,魏伟,白建飞. 磨砂射流轴向切顶技术工业试验及防冲效果分析. 陕西煤炭. 2024(12): 122-126+149 .
![]() | |
35. |
何明伟. 沿空留巷工作面复用巷道大面积悬顶水力压裂治理研究. 中国煤炭. 2024(S1): 111-119 .
![]() | |
36. |
李延军. 复合坚硬顶板强矿压显现特征及主控层位确定. 工矿自动化. 2024(12): 36-45+84 .
![]() | |
37. |
林榆昆,刘江伟,刘耀友,刘长友. 迎采掘进巷道水力切顶关键部位对顶板断裂行为的影响. 煤炭学报. 2024(S2): 593-605 .
![]() | |
38. |
孙如达,夏永学,高家明. 中高位厚硬顶板长孔水力压裂防冲效果研究. 煤矿安全. 2023(07): 69-77 .
![]() | |
39. |
李彦民,方刚,郑凯歌,王豪杰. 榆横北区中深埋煤层开采水力压裂技术实践. 陕西煤炭. 2023(05): 68-72 .
![]() | |
40. |
李海,杜涛涛,孙秉成,杨伟,常博,赵志鹏,李红平,贾兵兵,张弘毅. 坚硬顶板磨砂射流轴向切顶防冲技术研究. 采矿与岩层控制工程学报. 2023(05): 73-81 .
![]() | |
41. |
刘少兴,吴川,王虎. 基于捷联惯导的随钻测量轨迹解算算法的对比研究. 地质装备. 2023(05): 8-13 .
![]() | |
42. |
贾后省,王林,彭博,王国营,张定山,卓军,王艺博. 弱黏结复合顶板沿空留巷分级“控顶-卸压”机理与应用. 中国矿业大学学报. 2023(06): 1191-1202 .
![]() | |
43. |
陈春雷. 煤矿开采中的岩层控制技术研究与应用. 内蒙古煤炭经济. 2023(19): 124-126 .
![]() | |
44. |
李红平,杜涛涛,孙秉成,杨伟,常博,赵志鹏,贾兵兵,刘江. 坚硬顶板磨砂射流轴向切顶初次放顶应用研究. 煤炭工程. 2023(12): 102-107 .
![]() | |
45. |
李明轩,刘勇,王永洁,高龙,刘永强,王滨,雷顺. 坚硬顶板水力分段压裂切顶留巷技术及应用研究. 中国矿业. 2023(12): 153-160 .
![]() | |
46. |
王海钢,郭相平. 新元煤矿深孔水力压裂卸压护巷技术及应用. 能源与环保. 2023(12): 289-295+302 .
![]() |