Advance Search

LEI Guorong,LI Chunyuan,QI Qingxin,et al. Ultrasonic and CT scanning analysis of coal-rock mass under the primary bedding structure[J]. Coal Science and Technology,2024,52(3):74−86

. DOI: 10.13199/j.cnki.cst.2023-0314
Citation:

LEI Guorong,LI Chunyuan,QI Qingxin,et al. Ultrasonic and CT scanning analysis of coal-rock mass under the primary bedding structure[J]. Coal Science and Technology,2024,52(3):74−86

. DOI: 10.13199/j.cnki.cst.2023-0314

Ultrasonic and CT scanning analysis of coal-rock mass under the primary bedding structure

Funds: 

National Natural Science Foundation of China ( 51904303); Special Key Funding Project of Scientific and Technological Innovation and Entrepreneurship Funds of China Coal Technology & Engineering Group Corp. (2022-3-ZD001); Special Funding Project of Scientific and Technological Innovation and Entrepreneurship of China Coal Research Institute (2021-KXYJ-004)

More Information
  • Received Date: May 13, 2023
  • Available Online: November 30, 2023
  • In order to study the influence of the primary bedding structure on wave velocity and mechanical properties of coal-rock mass, multilayer and multi-directional ultrasonic and CT scanning tests were carried out in laboratory. It also aims to improve the accuracy, rapidity and convenience of obtaining the wave velocity and mechanical parameters of coal-rock mass in laboratory. Based on the ultrasonic test, the characteristics of wave velocity and wave velocity ratio at different layers of coal-rock mass under the primary bedding dip angle were obtained. Combined with CT scanning and 3D reconstruction technology, the calculation method of CT gray mean value in different layers was proposed by using the data of the gray frequency of coal and rock. And the variation law of gray value and coal and rock content of coal-rock mass in different layers under different primary bedding dip angle was obtained. Meanwhile, the relationships between CT gray mean value and wave velocity, mechanical parameters of coal-rock mass were established. Considering the effect of bedding dip angle and the content of coal and rock, the calculation model of longitudinal wave velocity of coal-rock mass was constructed. Then the correctness of the model is verified by comparing the test data. The results show that: ① the wave velocity and wave velocity ratio of coal-rock mass with primary bedding are linearly related to bedding dip angle; with the increase of bedding dip angle, the longitudinal wave velocity of coal-rock mass decreases linearly, while the distribution range of wave velocity ratio expands; ② the mean wave velocity of CT is linearly correlated under different bedding dip angles, and the wave velocity of coal-rock mass increases linearly with the increases of CT gray mean value; ③ the density of coal-rock mass increases linearly with the increase of CT gray mean value, the dynamic elastic modulus and shear modulus of coal-rock mass have third order polynomial relationships with the mean value of CT gray level, and they tend to increase with the increase of the mean value of CT gray level; ④ compared with the bedding dip angle, the wave velocity of coal-rock mass is more sensitive to the coal and rock content, and the wave velocity changes largest during the content of coal and rock similar.

  • [1]
    艾 婷,张 茹,刘建锋,等. 三轴压缩煤岩破裂过程中声发射时空演化规律[J]. 煤炭学报,2011,36(12):2048−2057.

    AI Ting,ZHANG Ru,LIU Jianfeng,et al. Spatial-temporal evolution of acoustic emission during fracture of coal under triaxial compression[J]. Journal of China Coal Society,2011,36(12):2048−2057.
    [2]
    潘荣锟,程远平,董 骏,等. 不同加卸载下层理裂隙煤体的渗透特性研究[J]. 煤炭学报,2014,39(3):473−477.

    PAN Rongkun,CHENG Yuanping,DONG Jun,et al. Study on permeability characteristics of fractured coal under different loading and unloading[J]. Journal of China Coal Society,2014,39(3):473−477.
    [3]
    陈 旭,俞 缙,李 宏,等. 不同岩性及含水率的岩石声波传播规律试验研究[J]. 岩土力学,2013,34(9):2527−2533.

    CHEN Xu,YU Jin,LI Hong,et al. Experimental study on acoustic propagation law of rock with different lithology and water content[J]. Rock and Soil Mechanics,2013,34(9):2527−2533.
    [4]
    王 宇,李 晓,胡瑞林,等. 岩土超声波测试研究进展及应用综述[J]. 工程地质学报,2015,23(2):287−300.

    WANG Yu,LI Xiao,HU Ruilin,et al. Review on research progress and application of rock and soil ultrasonic testing[J]. Journal of Engineering Geology,2015,23(2):287−300.
    [5]
    李贤胜,刘向君,熊 健,等. 层理对页岩纵波特性的影响[J]. 岩性油气藏,2019,31(3):152−160.

    LI Xiansheng,LIU Xiangjun,XIONG Jian,et al. Effect of bedding on longitudinal wave characteristics of shale[J]. Lithologic Reservoirs,2019,31(3):152−160.
    [6]
    SRI RAVINDRARAJAH R. Strength evaluation of high-strength concrete by ultrasonic pulse velocity method[J]. NDT and E International,1997,30(4):261−262.
    [7]
    SOLÍS-CARCANO R,MORENO E. Evaluation of concrete made with crushed limestone aggregate based on ultrasonic pulse velocity[J]. Construct Build Mater. 2008,22(6):1225−1231.
    [8]
    WYLLIE M R J,GREGORY A R,Gardner L W. Elastic Wave Velocities in Heterogeneous and Porous Media[J]. Geophysics,1956(2):41−70.
    [9]
    史 謌,杨东全. 岩石波速和孔隙度、泥质含量之间的关系研究[J]. 北京大学学报(自然科学版),2001,37(3):379−384.

    SHI Ge,YANG Dongquan. Study on the relationship between rock wave velocity,porosity and mud content[J]. Acta Scientiarum Naturalium Universitatis Pekinensis,2001,37(3):379−384.
    [10]
    蒋 玺,安 邦,唐 波,等. 0.6~2.0 GPa压力下部分熔融角闪辉长岩的纵波波速[J]. 岩石矿物学杂志,2013,32(4):505−514.

    JIANG Xi,AN Bang,TANG Bo,et al. Longitudinal wave velocities of partially fused angular blitz gabbro at 0.6-2.0 GPa pressures[J]. Acta Petrologicaet Mineralogica,2013,32(4):505−514.
    [11]
    晏先震,白海波,翟明磊. 不同层理倾角页岩的超声波传播特性研究[J]. 地下空间与工程学报,2021,17(S2):552−559.

    YAN Xianzhen,BAI Haibo,ZHAI Minglei. Study on ultrasonic propagation characteristics of shale with different bedding dips[J]. Chinese Journal of Underground Space and Engineering,2021,17(S2):552−559.
    [12]
    邓继新. 泥、页岩及储层砂岩声学性质实验与理论研究[D]. 北京:北京大学,2003.

    DENG Jixin. Experimental and theoretical study on acoustic properties of mud,shale and reservoir sandstone[D]. Beijing:Peking University,2003.
    [13]
    ZUO J P,WEI X,SHI Y,et al. Experimental study of the ultrasonic and mechanical properties of a naturally fractured limestone[J]. International Journal of Rock Mechanics and Mining Sciences,2020,125:104162. doi: 10.1016/j.ijrmms.2019.104162
    [14]
    KURTULU C,SERT ELIK F,SERT ELIK I. Correlating physico-mechanical properties of intact rocks with P-wave velocity[J]. Acta Geodaeticaet Geophysica,2016,51(3):571−582. doi: 10.1007/s40328-015-0145-1
    [15]
    NOURANI M H,MOGHADDER M T,Safari M. Classification and assessment of rock mass parameters in Choghart iron mine using P-wave velocity[J]. Journal of Rock Mechanics and Geotechnical Engineering:English Edition,2017,9(2):11.
    [16]
    徐晓炼,张 茹,戴 峰,等. 煤岩特性对超声波速影响的试验研究[J]. 煤炭学报,2015,40(4):793−800.

    XU Xiaolian,ZHANG Ru,DAI Feng,et al. Experimental study on the influence of coal and rock characteristics on ultrasonic wave velocity[J]. Journal of China Coal Society,2015,40(4):793−800.
    [17]
    李东会,梁雁侠,张 凯,等. 含水煤体纵波波速变化规律试验研究:以古汉山烟煤与赵固无烟煤为例[J]. 煤炭科学技术,2022,50(5):143−149.

    LI Donghui,LIANG Yanxia,ZHANG Kai,et al. Experimental study on the variation law of longitudinal wave velocity of water-bearing coal body:taking Guhanshan Bituminous coal and Zhaogu anthracite as examples[J]. Coal Science and Technology,2022,50(5):143−149.
    [18]
    朱传奇,谢广祥,王 磊. 松软煤体波速演化规律与破坏程度量化指标[J]. 煤炭学报,2022,47(7):2609−2622. doi: 10.13225/j.cnki.jccs.2021.1398

    ZHU Chuanqi,XIE Guangxiang,WANG Lei. Evolution law of wavevelocity and quantitative index of failure degree of soft coal body[J]. Journal of China Coal Society,2022,47(7):2609−2622. doi: 10.13225/j.cnki.jccs.2021.1398
    [19]
    李全贵,凌发平,胡千庭,等. 层状煤岩弹性波传播衰减特性试验研究[J]. 煤炭科学技术,2022,50(7):184−190.

    LI Quangui,LING Faping,HU Qianting, et al. Experimental study on elastic wave propagation and attenuation characteristics of layered coal[J]. Coal Science and Technology,2022,50(7):184−190.
    [20]
    张朝宗. 工业CT技术和原理[M]. 北京:科学出版社,2009.
    [21]
    毛灵涛,袁则循,连秀云,等. 基于CT数字体相关法测量红砂岩单轴压缩内部三维应变场[J]. 岩石力学与工程学报,2015,34(1):21−30. doi: 10.13722/j.cnki.jrme.2015.01.003

    MAO Lingtao,YUAN Zexun,LIAN Xiuyun,et al. Measurement of three-dimensional strain field in red sandstone under uniaxial compression based on CT digital volume correlation method[J]. Chinese Journal of Rock Mechanics and Engineering,2015,34(1):21−30. doi: 10.13722/j.cnki.jrme.2015.01.003
    [22]
    苑京文,贾 东,魏东涛,等. 基于工业CT扫描的岩芯裂缝结构表征[J]. 高校地质学报,2016,22(1):200−206. doi: 10.16108/j.issn1006-7493.2015241

    YUAN Jingwen,JIA Dong,WEI Dongtao,et al. Structural characterization of core fractures based on industrial CT scanning[J]. Geological Journal of China Universities,2016,22(1):200−206. doi: 10.16108/j.issn1006-7493.2015241
    [23]
    杨更社,孙 钧,谢定义,等. 岩石材料损伤变量与CT数间的关系分析[J]. 力学与实践,1998(4):48−50.

    YANG Gengshe,SUN Jun,XIE Dingyi,et al. Analysis of relationship between rock material damage variable and CT number[J]. Mechanics in Engineering,1998(4):48−50.
    [24]
    仵彦卿,曹广祝,丁卫华. CT尺度砂岩渗流与应力关系试验研究[J]. 岩石力学与工程学报,2005,24(4):4203−4209.

    WU Yanqing,CAO Guangzhu,DING Weihua. Experimental study on relationship between seepage and stress in CT scale sandstone[J]. Chinese Journal of Rock Mechanics and Engineering,2005,24(4):4203−4209.
    [25]
    李 静,孔祥超,宋明水,等. 储层岩石微观孔隙结构对岩石力学特性及裂缝扩展影响研究[J]. 岩土力学,2019,40(11):4149−4156.

    LI Jing,KONG Xiangchao,SONG Mingshui,et al. Study on the influence of micro pore structure of reservoir rock on rock mechanical properties and fracture propagation[J]. Rock and Soil Mechanics,2019,40(11):4149−4156.
    [26]
    毛灵涛,安里千,王志刚,等. 煤样力学特性与内部裂隙演化关系CT实验研究[J]. 辽宁工程技术大学学报(自然科学版),2010,29(3):408−411.

    MAO Lingtao,AN Liqian,WANG Zhigang,et al. CT experimental study on the relationship between mechanical properties and internal fracture evolution of coal samples[J]. Journal of Liaoning Technical University (Natural Science Edition),2010,29(3):408−411.
    [27]
    孙 欢,刘晓丽,王恩志,等. 基于X射线断层扫描预测岩石单轴抗压强度[J]. 岩石力学与工程学报,2019,38(S2):3575−3582. doi: 10.13722/j.cnki.jrme.2019.0614

    SUN Huan,LIU Xiaoli,WANG Enzhi,et al. Prediction of rock uniaxial compressive strength based on X-ray tomography[J]. Chinese Journal of Rock Mechanics and Engineering,2019,38(S2):3575−3582. doi: 10.13722/j.cnki.jrme.2019.0614
    [28]
    吴萍萍,丁志峰,谭捍东,等. 基于VP/VS波速比模型约束的张渤地震带深部电性结构研究[J]. 地球物理学报,2021,64(8):2716−2732.

    WU Pingping,DING Zhifeng,TAN Handong,et al. Study on deep electrical structure of Zhangbo Seismic Zone based on VP/VS velocity ratio model[J]. Journal of Geophysics,2021,64(8):2716−2732.
    [29]
    刘玉龙,汤达祯,许 浩,等. 基于X-CT技术不同煤岩类型煤储层非均质性表征[J]. 煤炭科学技术,2017,45(3):141−146. doi: 10.13199/j.cnki.cst.2017.03.025

    LIU Yulong,TANG Dazhen,XU Hao,et al. Based on X-CT technology,the heterogeneity of coal reservoir of different coal rock types is characterized[J]. Coal Science and Technology,2017,45(3):141−146. doi: 10.13199/j.cnki.cst.2017.03.025
    [30]
    王 斌,邓继新,刘喜武,等. 矿物组分对龙马溪组页岩动、静态弹性特征的影响[J]. 地球物理学报,2019,62(12):4833−4845. doi: 10.6038/cjg2019M0471

    WANG Bin,DENG Jixin,LIU Xiwu,et al. Influence of Mineral Components on dynamic and static elastic characteristics of Longmaxi shale[J]. Journal of Geophysics,2019,62(12):4833−4845. doi: 10.6038/cjg2019M0471
    [31]
    THOMSEN. Weak elsatic anisotropy[J]. Geophysics 1986,51(10):1954−1966.
    [32]
    王 赟,刘媛媛,张美根. 裂缝各向异性地震等效介质理论[M]. 北京:科学出版社,2017.
    [33]
    王 赟,杨 春,芦 俊. 薄互层弹性波反演面临的困境[J]. 地球物理学报,2018,61(3):1118−1135.

    WANG Yun,YANG Chun,LU Jun. Dilemmas of elastic wave inversion in thin interlayer[J]. Chinese Journal of Geophysics,2018,61(3):1118−1135.

Catalog

    Article views (97) PDF downloads (52) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return