Advance Search

MAO Zhengjun,GENG Mimi,BI Yinli,et al. Study on the time effect of shear strength of alfalfa-loess composite[J]. Coal Science and Technology,2023,51(11):234−247

. DOI: 10.13199/j.cnki.cst.2022-2230
Citation:

MAO Zhengjun,GENG Mimi,BI Yinli,et al. Study on the time effect of shear strength of alfalfa-loess composite[J]. Coal Science and Technology,2023,51(11):234−247

. DOI: 10.13199/j.cnki.cst.2022-2230

Study on the time effect of shear strength of alfalfa-loess composite

Funds: 

Key Research and Development Program of Shaanxi Province (2020SF-379), Key Research and Development Program of Ningxia Hui Autonomous Region (2022BEG03052)

More Information
  • Received Date: December 22, 2022
  • Available Online: November 08, 2023
  • The alfalfa-loess composite, obtained by artificial planting in PVC tubes, was selected as the research object. Through triaxial compression tests, the time effect of shear strength change of alfalfa-loess composite was analyzed, and the effects of confining stress and water content on the shear strength of alfalfa-loess composite  were compared. The results shown that the shear strength of alfalfa-loess complex was significantly enhanced compared to the plain loess. The cohesion of the alfalfa-loess composite significantly increased with increasing growth period of alfalfa (60 days, 90 days, 120 days and 150 days). Under a lower confining stress, the cohesion of alfalfa-loess composite with different growth periods in unconsolidated and undrained (UU) test increased by 7.02%, 18.81%, 26.09% and 36.41%, respectively, compared with that of plain loess, while that in the unconsolidated and undrained (CU) test increased by 27.62%, 50.87%, 77.62% and 158.11%, respectively. Under a higher confining stress, the cohesion of alfalfa-loess composite in unconsolidated and undrained (UU) test was significantly higher than that of plain loess, and increased with the growth period, but there was no obvious pattern in consolidated and undrained (CU) test. In addition, the case of herbaceous plants with shallow root growth was more practical to conduct triaxial test in a lower confining stress. The shear strength index of alfalfa-loess composite  in the saturated water content was significantly lower than that in the natural water content in the same growth period. As the growth period of alfalfa increased, the decrease in cohesion in the saturated water content was more obvious than that in natural water content. Artificial planting of alfalfa-loess composite using PVC tubes was more conductive to modeling the interaction between roots and soil.

  • [1]
    彭建兵,兰恒星,钱 会,等. 宜居黄河科学构想[J]. 工程地质学报,2020,28(2):189−201. doi: 10.13544/j.cnki.jeg.2020-129

    PENG Jianbing,LAN Hengxing,QIAN Hui,et al. Scientific Research framework of livable Yellow River[J]. Journal of Engineering Geology,2020,28(2):189−201. doi: 10.13544/j.cnki.jeg.2020-129
    [2]
    毕银丽,彭苏萍,杜善周. 西部干旱半干旱露天煤矿生态重构技术难点及发展方向[J]. 煤炭学报,2021,46(5):1355−1364. doi: 10.13225/j.cnki.jccs.st21.0707

    BI Yinli,PENG Suping,DU Shanzhou. Technological difficulties and future directions of ecological reconstruction in open pit coal mine of the arid and semi-arid areas of Western China[J]. Journal of China Coal Society,2021,46(5):1355−1364. doi: 10.13225/j.cnki.jccs.st21.0707
    [3]
    SCHWARZEL Z,ZHANG Lulu,MONTANARELLA L,et al. How afforestation affects the water cycle in drylands:A process-based comparative analysis[J]. Global Change Biology,2020,26(2):944−959. doi: 10.1111/gcb.14875
    [4]
    BRYAN B A,GAO Lei,YE Yanqiong,et al. China’s response to a national land-system sustainability emergency[J]. Nature,2018,559(7713):193−204. doi: 10.1038/s41586-018-0280-2
    [5]
    邱海军,崔 鹏,曹明明,等. 基于最大熵原理的黄土丘陵区地质灾害规模频率分布研究[J]. 岩土力学,2014,35(12):3541−3549,3555. doi: 10.16285/j.rsm.2014.12.003

    QIU Haijun,CUI Peng,CAO Mingming,et al. Distribution of frequency-size of geological disaster base on principle of maximum entropy in loess plateau[J]. Rock and Soil Mechanics,2014,35(12):3541−3549,3555. doi: 10.16285/j.rsm.2014.12.003
    [6]
    殷跃平, 胡时友, 石胜伟, 等. 滑坡防治技术指南[M]. 北京: 地质出版社, 2018.
    [7]
    毛正君,张瑾鸽,毕银丽,等. 紫花苜蓿对黄土边坡浅层破坏防护时间效应的数值分析[J]. 农业工程学报,2022,38(15):72−83. doi: 10.11975/j.issn.1002-6819.2022.15.008

    MAO Zhengjun,ZHANG Jinge,BI Yinli,et al. Numerical analysis of protection time effect on planting alfalfa in loess slope with shallow failure[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE),2022,38(15):72−83. doi: 10.11975/j.issn.1002-6819.2022.15.008
    [8]
    STOKES A,DOUGLAS G B. FOURCAUD T,et al. Ecological mitigation of hillslope instability:ten key issues facing researchers and practitioners[J]. Plant Soil,2014,377(1-2):1−23. doi: 10.1007/s11104-014-2044-6
    [9]
    VEYLON G,GHESTEM M,STOKES A,et al. Quantification of mechanical and hydric components of soil reinforcement by plant roots[J]. Canadian Geotechnical Journal,2015,52(11):1839−1849. doi: 10.1139/cgj-2014-0090
    [10]
    HU,X S,BRIERLEY G,ZHU H L,et al. An exploratory analysis of vegetation strategies to reduce shallow landslide activity on loess hillslopes,Northeast Qinghai-Tibet Plateau,China[J]. Journal of Mountain Science,2013,10(4):668−686. doi: 10.1007/s11629-013-2584-x
    [11]
    RANJAN V,SEN P,KUNAR D,et al. Enhancement of mechanical stability of waste dump slope through establishing vegetation in a surface iron ore mine[J]. Environmental Earth Sciences,2017,53(2):377−388.
    [12]
    陈丽华, 余新晓, 宋维峰. 林木根系固土力学机制[M]. 北京: 科学出版社, 2008.

    CHEN Lihua, YU Xinxiao, SONG Weifeng. Mechanics of Root-Soil[M]. Beijing: Science Press, 2008
    [13]
    余芹芹,胡夏嵩,李国荣,等. 寒旱环境灌木植物根-土复合体强度模型试验研究[J]. 岩石力学与工程学报,2013,32(5):1020−1031. doi: 10.3969/j.issn.1000-6915.2013.05.021

    YU Qinqin,HU Xiasong,LI Guorong,et al. Research on the strength model test of shrub root-soil composite system in cold and arid environment[J]. Chinese Journal of Rock Mechanics and Engineering,2013,32(5):1020−1031. doi: 10.3969/j.issn.1000-6915.2013.05.021
    [14]
    WU T H. Root reinforcement of soil:review of analytical models,test results,and applications to design[J]. Canadian Geotechnical Journal,2013,50(3):259−274. doi: 10.1139/cgj-2012-0160
    [15]
    熊丹伟,陈芳清,谭向前,等. 实验条件下紫羊茅种群植被混凝土的固土护坡性能[J]. 山地学报,2021,39(2):207−217. doi: 10.16089/j.cnki.1008-2786.000588

    XIONG Danwei,CHEN Fangqing,TAN Xiangqian,et al. Performance of Festuca rubra L. population vegetation concrete in soil conservation and slope reinforcement under experimental conditions[J]. Mountain Research,2021,39(2):207−217. doi: 10.16089/j.cnki.1008-2786.000588
    [16]
    郭洋楠,宫传刚,杨 剑,等. 草本植物对边坡稳定性影响研究进展[J]. 草地学报,2022,30(4):841−849.

    GUO Yangnan,GONG Chuangang,YANG Jian,et al. Research progress on influence of herbaceous vegetation on slope stability[J]. Acta Agrestia Sinica,2022,30(4):841−849.
    [17]
    LOADES K W,BENGOUGH A G,BRANABY M F,et al. Planting density influence on fibrous root reinforcement of soils[J]. Ecological Engineering,2010,36(3):276−284. doi: 10.1016/j.ecoleng.2009.02.005
    [18]
    EAB K H,LIKITLERSUANG S,TAKAHASHI A. Laboratory and modelling investigation of root-reinforced system for slope stabilisation[J]. Soils & Foundations,2015,55(5):1270−1281.
    [19]
    郑子成,张锡洲,李廷轩,等. 玉米生长期土壤抗剪强度变化特征及其影响因素[J]. 农业机械学报,2014,45(5):125−130,172. doi: 10.6041/j.issn.1000-1298.2014.05.020

    ZHENG Zicheng,ZHANG Xizhou,LI Tingxuan,et al. Change characteristics and influencing factors of soil shear strength during maize growing period[J]. Transactions of the Chinese Society for Agricultural Machinery,2014,45(5):125−130,172. doi: 10.6041/j.issn.1000-1298.2014.05.020
    [20]
    刘治兴,杨建英,杨 阳,等. 高速公路不同植物防护边坡根土复合体抗剪能力研究[J]. 生态环境学报,2015,24(4):631−637.

    LIU Zhixing,YANG Jianying,YANG Yang,et al. Research on the root-soil composite anti-shearing strength on expressway slope in different plant protection measures[J]. Ecology and Environmental Sciences,2015,24(4):631−637.
    [21]
    郑明新,黄 钢,彭 晶. 不同生长期多花木兰根系抗拉拔特性及其根系边坡的稳定性[J]. 农业工程学报,2018,34(20):175−182.

    ZHENG Mingxin,HUANG Gang,PENG Jing. Tensile-pullout properties of roots of Magnolia multiflora in different growth stages and stability of slope with its root[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE),2018,34(20):175−182.
    [22]
    苑淑娟,牛国权,刘 静,等. 瞬时拉力下两个生长期4种植物单根抗拉力与抗拉强度的研究[J]. 水土保持通报,2009,29(5):21−25. doi: 10.13961/j.cnki.stbctb.2009.05.042

    YUAN Shujuan,NIU Guoquan,LIU Jing,et al. Instantaneous anti-tension and tensile strength of single root of four plant species in two growth periods[J]. Bulletin of Soil and Water Conservation,2009,29(5):21−25. doi: 10.13961/j.cnki.stbctb.2009.05.042
    [23]
    LI Q,LIU G B,ZHANG Z,et al. Effect of root architecture on structural stability and erodibility of topsoils during concentrated flow in hilly Loess Plateau[J]. Chinese Geographical Science,2015,25(6):757−764. doi: 10.1007/s11769-014-0723-0
    [24]
    ZHOU Z C,SHANGGUAN Z P. Effect of Ryegrasses on Soil Runoff and Sediment Control[J]. Pedosphere,2008,18(1):131−136. doi: 10.1016/S1002-0160(07)60111-8
    [25]
    张兴玲,胡夏嵩,李国荣,等. 青藏高原东北部黄土区灌木幼林根系护坡的时间效应[J]. 农业工程学报,2012,28(4):136−141. doi: 10.3969/j.issn.1002-6819.2012.04.022

    ZHANG Xingling,HU Xiasong,LI Guorong,et al. Time effect of young shrub roots on slope protection of loess area in Northeast Qinghai-Tibetan plateau[J]. Transactions of the Chinese Society of Agricultural Engineering,2012,28(4):136−141. doi: 10.3969/j.issn.1002-6819.2012.04.022
    [26]
    王元战,刘旭菲,张智凯,等. 含根量对原状与重塑草根加筋土强度影响的试验研究[J]. 岩土工程学报,2015,37(8):1405−1410. doi: 10.11779/CJGE201508007

    WANG Yuanzhan,LIU Xufei,ZHANG Zhikai,et al. Experimental research on influence of root content on strength of undisturbed and remolded grassroots-reinforced soil[J]. Chinese Journal of Geotechnical Engineering,2015,37(8):1405−1410. doi: 10.11779/CJGE201508007
    [27]
    PALLEWATTHA M,INDRARATNA B,HEITOR A,et al. Shear strength of a vegetated soil incorporating both root reinforcement and suction[J]. Transportation Geotechnics,2019,18:72−82. doi: 10.1016/j.trgeo.2018.11.005
    [28]
    YILDIZ A,GRAF F,RICKLI C,et al. Determination of the shearing behaviour of root-permeated soils with a large-scale direct shear apparatus[J]. Catena,2018,166:98−113. doi: 10.1016/j.catena.2018.03.022
    [29]
    LI,Y P,WANG Y Q,WANG Y J,et al. Effects of root spatial distribution on the elastic-plastic properties of soil-root blocks[J]. Scientific Reports,2017,7(1):800. doi: 10.1038/s41598-017-00924-z
    [30]
    FORESTA V,CAPOBIANCO V,CASCINI L. Influence of grass roots on shear strength of pyroclastic soils[J]. Canadian Geotechnical Journal,2020,57(9):1320−1334. doi: 10.1139/cgj-2019-0142
    [31]
    段青松,王金霞,和贵祥,等. 不同草本植物根土复合体无侧限抗压强度增量与根系分布特征关系[J]. 云南大学学报(自然科学版),2019,41(4):832−841.

    DUAN Qingsong,WANG Jinxia,HE Guixiang,et al. Relationship between the increment of unconfined compressive strength of root-soil and the root distribution characteristics[J]. Journal of Yunnan University (Natural Sciences Edition),2019,41(4):832−841.
    [32]
    LIU J,CHEN Z H,ZENG Z H,et al. Influence of Polyurethane Polymer on the Strength and Mechanical Behavior of Sand-root Composite[J]. Fibers and Polymers,2020,21(4):829−839. doi: 10.1007/s12221-020-9331-z
    [33]
    ZHANG C B,CHEN L H,LIU Y P. Triaxial compression test of soil–root composites to evaluate influence of roots on soil shear strength[J]. Ecological Engineering,2010,36(1):19−26. doi: 10.1016/j.ecoleng.2009.09.005
    [34]
    LIAN B Q,PENG J B,ZHAN H B,et al. Mechanical response of root-reinforced loess with various water contents[J]. Soil and Tillage Research,2019,193:85−94. doi: 10.1016/j.still.2019.05.025
    [35]
    杨吉华,张光灿,刘 霞,等. 紫花苜蓿保持水土效益的研究[J]. 土壤侵蚀与水土保持学报,1997,3(2):91−96.

    YANG Jihua,ZHANG Guangcan,LIU Xia,et al. Study on benefits of alfalfa conservating soil and water[J]. Journal of Soil Erosion and Soil and Water Conservation,1997,3(2):91−96.
    [36]
    周 霞,李东嵘,蒋 静,等. 紫花苜蓿根系拉拔试验研究[J]. 人民长江,2019,50(7):185−188. doi: 10.16232/j.cnki.1001-4179.2019.07.032

    ZHOU Xia,LI Dongrong,JIANG Jing,et al. Study on anti-pulling test of Alfalfa root system[J]. Yangtze River,2019,50(7):185−188. doi: 10.16232/j.cnki.1001-4179.2019.07.032
    [37]
    何忠明,黄 超,刘雅欣,等. 粗粒土路堤填料力学特性及其细观模拟研究[J]. 中南大学学报(自然科学版),2020,51(4):1116−1124. doi: 10.11817/j.issn.1672-7207.2020.04.026

    HE Zhongming,HUANG Chao,LIU Yaxin,et al. Study on mechanical properties and mesoscopic simulation of coarse-grained soil subgrade[J]. Journal of Central South University (Science and Technology),2020,51(4):1116−1124. doi: 10.11817/j.issn.1672-7207.2020.04.026
    [38]
    路军富,章春炜,钟英哲,等. 不同含水率砂卵石围岩宏细观力学特性研究[J]. 地下空间与工程学报,2018,14(6):1564−1570.

    LU Junfu,ZHANG Chunwei,ZHONG Yingzhe,et al. Research on macro-meso mechanical properties of sandy cobble surrounding rock with different moisture content[J]. Chinese Journal of Underground Space and Engineering,2018,14(6):1564−1570.
    [39]
    方祥位,陈正汉,申春妮,等. 原状Q2黄土三轴剪切特性[J]. 岩石力学与工程学报,2008,27(2):383−389.

    FANG Xiangwei,CHEN Zhenghan,SHEN Chunni,et al. Triaxial shear properties of undisturbed loess Q2[J]. Chinese Journal of Rock Mechanics and Engineering,2008,27(2):383−389.
    [40]
    陈存礼,高 鹏,胡再强. 黄土的增湿变形特性及其与结构性的关系[J]. 岩石力学与工程学报,2006,25(7):1352−1360. doi: 10.3321/j.issn:1000-6915.2006.07.009

    CHEN Cunli,GAO Peng,HU Zaiqiang. Moistening deformation characteristic of loess and its relation to structure[J]. Chinese Journal of Rock Mechanics and Engineering,2006,25(7):1352−1360. doi: 10.3321/j.issn:1000-6915.2006.07.009
    [41]
    蔡国庆,张 策,黄哲文,等. 含水率对砂质Q3黄土抗剪强度影响的试验研究[J]. 岩土工程学报,2020,42(S2):32−36. doi: 10.11779/CJGE2020S2006

    CAI Guoqing,ZHANG Ce,HUANG Zhewen,et al. Experimental study on influences of moisture content on shear strength of unsaturated loess[J]. Chinese Journal of Geotechnical Engineering,2020,42(S2):32−36. doi: 10.11779/CJGE2020S2006
    [42]
    周文权,冷伍明,刘文劼,等. 低围压循环荷载作用下饱和粗粒土的动力特性与骨干曲线模型研究[J]. 岩土力学,2016,37(2):415−423. doi: 10.16285/j.rsm.2016.02.014

    ZHOU Wenquan,LENG Wuming,LIU Wenshao,et al. Dynamic behavior and backbone curve model of saturated coarse-grained soil under cyclic loading and low confining pressure[J]. Rock and Soil Mechanics,2016,37(2):415−423. doi: 10.16285/j.rsm.2016.02.014
    [43]
    孙星亮,汪 稔,胡明鉴,等. 低围压下冻结粉质粘土的三轴强度及变形分析[J]. 岩土力学,2005,26(10):1623−1627. doi: 10.3969/j.issn.1000-7598.2005.10.019

    SUN Xingliang,WANG Ren,HU Mingjian,et al. Triaxial strength and deformation properties of frozen silty clay under low confining pressure[J]. Rock and Soil Mechanics,2005,26(10):1623−1627. doi: 10.3969/j.issn.1000-7598.2005.10.019
    [44]
    文 伟,李艳荣,李光范,等. 不同围压下草本植物根系对土体加筋效应试验研究[J]. 力学季刊,2016,37(1):124−130.

    WEN Wei,LI Yanrong,LI Guangfan,et al. Experimental study on reinforcement effect of herbaceous roots on soil under different confining pressures[J]. Chinese Quarterly of Mechanics,2016,37(1):124−130.
    [45]
    邹维列,陈 轮,张俊峰,等. 低围压水平下QH-E模拟月壤三轴试验技术与力学特性[J]. 岩土工程学报,2015,37(8):1418−1425. doi: 10.11779/CJGE201508009

    ZOU Weilie,CHEN Lun,ZHANG Junfeng,et al. Techniques for triaxial compression tests on simulant lunar soil QH-E and its mechanical behaviors under low confining stress[J]. Chinese Journal of Geotechnical Engineering,2015,37(8):1418−1425. doi: 10.11779/CJGE201508009
    [46]
    袁志辉,倪万魁,唐 春,等. 干湿循环下黄土强度衰减与结构强度试验研究[J]. 岩土力学,2017,38(7):1894−1902,1942. doi: 10.16285/j.rsm.2017.07.007

    YUAN Zhihui,NI Wankui,TANG Chun,et al. Experimental study of structure strength and strength attenuation of loess under wetting-drying cycle[J]. Rock and Soil Mechanics,2017,38(7):1894−1902,1942. doi: 10.16285/j.rsm.2017.07.007
    [47]
    叶万军,李长清,杨更社,等. 增湿-减湿作用下黄土裂隙演化规律研究[J]. 工程地质学报,2017,25(2):376−383. doi: 10.13544/j.cnki.jeg.2017.02.015

    YE Wanjun,LI Changqing,YANG Gengshe,et al. Evolution of loess crack under action of dehumidification-humidification[J]. Journal of Engineering Geology,2017,25(2):376−383. doi: 10.13544/j.cnki.jeg.2017.02.015
    [48]
    李 佳,汪 霞,贾海霞,等. 浅层滑坡多发区典型灌木根系对边坡土体抗剪强度的影响[J]. 生态学报,2019,39(14):5117−5126.

    LI Jia,WANG Xia,JIA Haixia,et al. Ecological restoration with shrub roots for slope reinforcement in a shallow landslide-prone region[J]. Acta Ecologica Sinica,2019,39(14):5117−5126.
    [49]
    王 轩,李珍玉,肖宏彬,等. 基于土-水特征曲线的植物边坡抗剪强度研究[J]. 水土保持学报,2021,35(5):57−62+71. doi: 10.13870/j.cnki.stbcxb.2021.05.009

    WANG Xuan,LI Zhenyu,XIAO Hongbin,et al. Study on shear strength of plant slope based on soil-water characteristic curve[J]. Journal of Soil and Water Conservation,2021,35(5):57−62+71. doi: 10.13870/j.cnki.stbcxb.2021.05.009
    [50]
    MAO Z,SAINT A L,GENET M,et al. Engineering ecological protection against landslides in diverse mountain forests:Choosing cohesion models[J]. Ecological Engineering,2012,45:55−69. doi: 10.1016/j.ecoleng.2011.03.026
    [51]
    BOLDRIN D, LEUNG A K, BENGOUGH A G. Root biomechanical properties during establishment of woody perennials[J]. Ecological Engineering, 2017, 109: 196-206.
    [52]
    FAN C C,CHEN Y W. The effect of root architecture on the shearing resistance of root-permeated soils[J]. Ecological Engineering,2010,36(6):813−826. doi: 10.1016/j.ecoleng.2010.03.003
    [53]
    程 洪,颜传盛,李建庆,等. 草本植物根系网的固土机制模式与力学试验研究[J]. 水土保持研究,2006,13(1):62−65. doi: 10.3969/j.issn.1005-3409.2006.01.022

    CHENG Hong,YAN Chuansheng,LI Jianqing,et al. An Experimental Study on Mechanic Performance and Mechanism of Soil-reinforcement by Herb Root System[J]. Research of Soil and Water Conservation,2006,13(1):62−65. doi: 10.3969/j.issn.1005-3409.2006.01.022
    [54]
    程 洪,张新全. 草本植物根系网固土原理的力学试验探究[J]. 水土保持通报,2002,22(5):20−23. doi: 10.3969/j.issn.1000-288X.2002.05.006

    CHENG Hong,ZHANG Xinquan. An Experimental Study on Herb Plant Root System for Strength Principle of Soil-fixation[J]. Bulletin of Soil and Water Conservation,2002,22(5):20−23. doi: 10.3969/j.issn.1000-288X.2002.05.006
    [55]
    胡夏嵩,李国荣,朱海丽,等. 寒旱环境灌木植物根-土相互作用及其护坡力学效应[J]. 岩石力学与工程学报,2009,28(3):613−620. doi: 10.3321/j.issn:1000-6915.2009.03.022

    HU Xiasong,LI Guorong,ZHU Haili,et al. Research on interaction between vegetation root and soil for slope protection and its mechanical effect in cold and arid environment[J]. Chinese Journal of Rock Mechanics and Engineering,2009,28(3):613−620. doi: 10.3321/j.issn:1000-6915.2009.03.022
    [56]
    GHESTEM M,VEYLON G,BERNARD A,et al. Influence of plant root system morphology and architectural traits on soil shear resistance[J]. Plant & Soil,2014,377(1-2):43−61.
    [57]
    BORDOLOI S,NG C W W. The effects of vegetation traits and their stability functions in bio-engineered slopes:A perspective review[J]. Engineering Geology,2020,275:105742. doi: 10.1016/j.enggeo.2020.105742

Catalog

    Article views (63) PDF downloads (22) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return