WU Yangxu,CHEN Ping,LI Bo. Location of underground microseismic source based on 3D two-stream network[J]. Coal Science and Technology,2023,51(S2):13−24
. DOI: 10.13199/j.cnki.cst.2022-0395Citation: |
WU Yangxu,CHEN Ping,LI Bo. Location of underground microseismic source based on 3D two-stream network[J]. Coal Science and Technology,2023,51(S2):13−24 . DOI: 10.13199/j.cnki.cst.2022-0395 |
The detection technology of the microseismic source center of underground damage is mainly used for the location of the underground damage, positioning of explosion point of artillery shells in weapon testing ground. Aiming at the problem that clock error of microseismic acquisition sensor and the lack of high frequency information of acquisition data, this paper proposes a distributed microseismic source location for underground damage based on 3D two-stream network. The method uses spatial scanning to make the low-dimensional vibration wave information highly dimensional, transforms the seismic waveform data from the time domain into the energy domain, and establishes the correspondence between the source center and the high-dimensional energy distribution. Then, the energy domain features are extracted through the 3D-CNN network, and the LSTM network gradually optimizes the focal center region to obtain accurate focal center location. The results show that the source location of underground damage microseismic based on 3D dual-current network is obviously superior to the traditional traveltime-like source location method, and the proposed method has stronger data fitting ability and anti-interference ability in high SNR data. The results of static explosion test in small field show that the proposed method is superior to the traditional method in near field microseismic source location.
[1] |
吴顺川,郭 超,高永涛,等. 岩体破裂震源定位问题探讨与展望[J]. 岩石力学与工程学报,2021,40(5):18−25. doi: 10.13722/j.cnki.jrme.2020.0710
WU Shunchuan,GUO Chao,GAO Yongtao,et al. Discussion and prospect of source location of rock fracture[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(5):18−25. doi: 10.13722/j.cnki.jrme.2020.0710
|
[2] |
CHENG Jiulong,SONG Guangdong,SUN Xiaoyun,et al. Research developments and prospects on microseismic source location in mines[J]. Engineering,2018,4(5):159−174.
|
[3] |
徐 港,薛传荣,王鑫科,等. 考虑地震波折射的层状介质微震源定位方法[J]. 岩石力学与工程学报,2021,40(8):10−20. doi: 10.13722/j.cnki.jrme.2020.1167
XU Gang,XUE Chuanrong,WANG Xinke,et al. A microseismic source location method considering refraction of seismic waves in layered media[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(8):10−20. doi: 10.13722/j.cnki.jrme.2020.1167
|
[4] |
余洋洋,梁春涛,杜 瑶,等. 基于微地震定位与震源机制联合反演算法分析页岩气水力压裂效果及应力状态[J]. 中国地震,2021,37(2):12−25.
YU Yangyang,LIANG Chuntao,DU Yao,et al. Analysis of shale gas hydraulic fracturing effect and stress state based on joint inversion algorithm(JSSA) of microseismic locationand focal mechanism[J]. Earthquake Research in China,2021,37(2):12−25.
|
[5] |
王 辉,梁 苗,朱梦博. 基于单纯形-最短路径射线追踪的微震震源混合定位算法[J]. 中国矿业,2020,29(10):7−17.
WANG Hui,LIANG Miao,ZHU Mengbo,et al. A hybrid microseismic source location algorithm based on simplex and shortest path ray tracing[J]. China Mining Magazine,2020,29(10):7−17.
|
[6] |
王 瑜. 基于双差微地震震源定位法及应用研究[J]. 化工管理, 2020, 21(1): 2−12.
WANG Yu. Research on source location method and application based on double difference microearthquake[J] Chemical Management, 2020, 21(1): 2−12.
|
[7] |
ZHANG Q,MAO W,FANG J. Elastic full waveform inversion with source-independent crosstalk-free source-encoding algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing,2020,58(4):2915−2927. doi: 10.1109/TGRS.2019.2957829
|
[8] |
LI Y,XU F. All-phase fast Fourier transform and multiple cross-correlation analysis based on Geiger iteration for acoustic emission sources localization in complex metallic structures[J]. Structural Health Monitoring,2021,8(1):1−15.
|
[9] |
DONG L,HU Q,X TONG,et al. Velocity-free MS/AE source location method for three-dimensional hole-containing structures[J]. Engineering,2020,6(7):1−15.
|
[10] |
CHAI C,MACEIRA M,SANTOS V,et al. Using a deep neural network and transfer learning to bridge scales for seismic phase picking[J]. Geophysical Research Letters,2020,47(16):1−20.
|
[11] |
薛清峰. 基于波动方程的微地震震源位置, 震源时间及介质各向异性参数联合反演[J]. 中国地震,2021,37(2):15−25.
XUE Qingfeng. Wave equation based joint inversion of microseismic source location, source excitation time and anisotropic parameters of the VTI media[J]. Earthquake Research in China,2021,37(2):15−25.
|
[12] |
毛庆辉,程健勇,岳曙耀,等. 基于不同波形叠加函数的井中微地震震源偏移定位方法对比[J]. 长江大学学报自然科学版,2020,17(1):6−16.
MAO Qinghui,CHENG Jianyong,YUN Shuyao,et al. Comparison of migration-basedLocation methods of downhole microseismic source basedon different waveform stack functions[J]. Journal of Yangtze University,2020,17(1):6−16.
|
[13] |
LIANG C,YU Y,WU F,et al. Local stress field inverted for a shale gas play based on focal mechanisms determined from the joint source scanning algorithm[J]. Acta Seismologica Sinica,2021,34(3):12−22.
|
[14] |
ROSS Z E, MEIER M A, HAUKSSON E, et al. 利用深度学习进行P波到时拾取和初动极性判定[J]. 世界地震译丛, 2020, 51(2): 132−143.
ROSS Z E, MEIER M A, HAUKSSON E, et al. P wave arrival picking and first-motion polarity determination with deep learning[J]. Geophys. Res. : Solid Earth. 2020, 123: 5120−5129.
|
[15] |
毛海波,马俊彦,王晓涛,等. 基于自适应字典学习的可控震源数据谐波噪声压制方法[J]. 石油物探,2020,59(5):11−22. doi: 10.3969/j.issn.1000-1441.2020.05.006
MAO Haibo,MA Junyan,WANG Xiaotao,et al. Harmonic noise suppression of vibroseis data based on adaptive dictionary learning[J]. Geophysical Prospecting for Petroleum,2020,59(5):11−22. doi: 10.3969/j.issn.1000-1441.2020.05.006
|
[16] |
国运东, 黄建平, 崔 超, 等. 基于K-SVD字典学习的稀疏约束编码多震源方向: 全波形反演[J]. 应用地球物理(英文版), 2020, 17(1): 14−24.
GUO Yundong, HUANG Jianping, CUI Chao, et al. Sparse constrained encoding multi-source full waveform inversion method based on K-SVD dictionary learning[J] Applied Geophysics, 2020, 17(1): 14−24.
|
[17] |
李薇薇, 龚仁彬, 周相广, 等. 基于深度学习UNet++网络的初至波拾取方法[J]. 地球物理学进展, 2021, 36(1): 8−19.
LI Weiwei, GONG Renbin, ZHOU Xiangguang et al. UNet++: a deep neural network based seismic arrival time picking method[j]. Progress in Geophysics, 2021, 36(1): 8−19.
|
[18] |
KAMNITSAS K,LEDIG C,NEWCOMBE V,et al. Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation[J]. Medical Image Analysis,2016,36(61):1−10.
|
[19] |
PENG Y,TAO H,LI W,et al. Dynamic gesture recognition based on feature fusion network and variant ConvLSTM[J]. IET Image Processing,2020,2(1):1−15. doi: 10.36548/jiip.2020.1.001
|
[20] |
AGHAMIRY H S,GHOLAMI A,OPERTO S,et al. ADMM-based full-waveform inversion for microseismic imaging[J]. Geophysical Journal International,2021,1(1):1−12.
|
[1] | LEI Zhaoyuan, LI Feng, ZHAO Zikui, LI Lei, HUANG Xingli. Breaking mechanism of hard thick roof during the life cycle of large mining height working face[J]. COAL SCIENCE AND TECHNOLOGY. DOI: 10.12438/cst.2024-0546 |
[2] | CHEN Dingchao, WANG Xiangyu, BAI Jianbiao, LI Menglong, LU Jianfei, ZHANG Feiteng, SUN Shiqi, ZHAO Xiangqian, YU Yang. Full cycle evolution law of energy-stress in the surrounding rock of the gob-side entry driving for adjacent advancing working face[J]. COAL SCIENCE AND TECHNOLOGY, 2025, 53(4): 162-175. DOI: 10.12438/cst.2023-1923 |
[3] | PANG Yihui, BI Jinglong, YUAN Pengzhe, ZHAO Baofu, DING Ziwei. Coal mining equipment lifecycle management system architecture and key technology[J]. COAL SCIENCE AND TECHNOLOGY, 2025, 53(2): 339-350. DOI: 10.12438/cst.2024-1609 |
[4] | WANG Jinman, FENG Yu, YE Tiantian, JIA Mengxuan, GAO Tingyu, LIU Yue, WU Dawei, LI Minggang. Theoretical framework and technical pathway for the integrated ecological restoration throughout the overall life cycle of mining based on NbS[J]. COAL SCIENCE AND TECHNOLOGY, 2025, 53(1): 377-391. DOI: 10.12438/cst.2024-0797 |
[5] | WANG Zhenyu, LIU Xiaomin, LIU Tingxi, WANG Wenjuan, XUE Lian. Study on influencing factors of coal-water coordinated mining based on theory of full life cycle[J]. COAL SCIENCE AND TECHNOLOGY, 2021, 49(12): 243-251. |
[6] | ZHANG Huijun. Preliminary study on ecological mining mode in coal-rich area of the Yellow River Basin[J]. COAL SCIENCE AND TECHNOLOGY, 2021, 49(12): 233-242. |
[7] | ZHANG Xuhui, GUO Huanhuan, MA Hongwei, CHE Wanli, PAN Gege, ZHANG Chao, ZHAO Youjun, ZHANG Yuliang, MAO Qinghua, FAN Hongwei, DU Yuyang, XUE Xusheng, WANG Chuanwei, DONG Ming, LIU Peng, XIA Jing, CAO Xiangang. Research and application of green evaluation method for shearer based on life cycle[J]. COAL SCIENCE AND TECHNOLOGY, 2021, 48(6): 205-212. |
[8] | QIN Zhu. Research and application of life cycle service system of mining equipment[J]. COAL SCIENCE AND TECHNOLOGY, 2019, (4). |
[9] | YU Jiacheng, WANG Gang, LIU Weidong, NING Yongjie, JIANG Hanhan. Life-cycle information integration and working condition discriminational gorithm of mine equipment[J]. COAL SCIENCE AND TECHNOLOGY, 2019, (4). |
[10] | Yang Jian Liu Hunju Xi Qingxiang Li Jianhua, . Analysis on reliability standard system of scraper chain based on whole life cycle[J]. COAL SCIENCE AND TECHNOLOGY, 2017, (3). |
1. |
王志刚,马丁,杨震,贾帆帆. 改进型止浆塞在上斜钻孔带压封堵地质异常区中的应用研究. 煤炭技术. 2025(01): 167-170 .
![]() | |
2. |
王慧恩. 穿层瓦斯抽采钻孔渗流演化特征. 陕西煤炭. 2025(01): 37-40+63 .
![]() | |
3. |
朱卫兵,李竹,赵波智,郭春雷,宁杉. 矿山采空区卸压底板岩层资源化利用技术体系构建及展望. 煤炭学报. 2025(05): 2355-2366 .
![]() | |
4. |
孙赫. 穿层钻孔瓦斯抽采半径研究. 煤炭技术. 2024(03): 165-168 .
![]() | |
5. |
董相欢. 底板承压水上底抽巷破坏特征及控制技术. 陕西煤炭. 2024(06): 70-76 .
![]() | |
6. |
段东东. 底板承压水上底抽巷布置层位及围岩控制技术研究. 山东煤炭科技. 2024(07): 114-119 .
![]() | |
7. |
张建国,翟成,唐伟. 深井不同层位底板岩巷与煤巷相互影响研究. 煤炭工程. 2024(08): 1-6 .
![]() | |
8. |
刘军. 煤层群上下保护层开采围岩应力及裂隙演化规律研究. 矿业安全与环保. 2024(04): 56-63+73 .
![]() | |
9. |
高登云,李瑞群. 神东矿区综采工作面上隅角瓦斯治理技术研究. 煤炭工程. 2023(04): 87-91 .
![]() | |
10. |
郭建行. 近距离高瓦斯煤层群首采层“一面四巷”瓦斯治理技术. 煤炭工程. 2023(05): 70-75 .
![]() | |
11. |
胡亚超,熊祖强,王春,王成. 煤层顶板深孔预裂爆破高效封孔材料及工艺研究. 煤炭科学技术. 2023(04): 30-36 .
![]() | |
12. |
张超,范富槐,李树刚,翟成,江丙友,杨朴超,曾祥真. 基于微胶囊技术的瓦斯抽采钻孔密封材料研究. 煤炭科学技术. 2023(04): 72-79 .
![]() | |
13. |
武瑞龙. 复杂地层底板梳状定向钻孔抽采瓦斯技术研究. 煤炭工程. 2023(06): 79-82 .
![]() | |
14. |
温俊三. 赵庄矿底抽巷穿层钻孔偏斜规律研究. 山西煤炭. 2023(01): 13-18 .
![]() | |
15. |
刘军,张宪尚,张士岭. 煤层群上下保护层开采围岩应力时空演化规律及应用研究. 中国安全生产科学技术. 2023(06): 66-73 .
![]() | |
16. |
孙伟. 深部高应力底抽巷围岩破坏特征及控制技术研究. 山西冶金. 2023(06): 220-224 .
![]() | |
17. |
潘竞涛,刘长宇,赵丹,贾男,刘海金,任志保. 下行定向钻孔氮气泡沫幂律多相流携渣解堵技术. 煤炭科学技术. 2023(12): 298-309 .
![]() | |
18. |
赵学良,贾航,罗华贵. 赵庄煤矿工作面分源联合立体抽采技术应用研究. 煤炭工程. 2022(01): 74-79 .
![]() | |
19. |
包若羽. 松软煤层瓦斯抽采钻孔“同心环”加固密封技术研究与应用. 煤炭科学技术. 2022(05): 164-170 .
![]() | |
20. |
李高健,韦金龙,杨竹军,赵宝友. 密集抽采钻孔及浸水蠕变作用下底抽巷围岩控制技术研究. 煤炭工程. 2022(07): 44-49 .
![]() | |
21. |
马玉林,王常瑞,马凯. 红外加热储层煤岩热损伤特征扫描电镜及增透试验研究. 煤炭科学技术. 2022(07): 177-183 .
![]() | |
22. |
马雨坤. 瓦斯抽采钻孔精准防斜设备研究. 能源技术与管理. 2022(05): 142-144 .
![]() | |
23. |
马莉,石新莉,李树刚,林海飞,宋爽,代新冠. 基于MPC的瓦斯抽采智能调控模型研究. 煤炭科学技术. 2022(08): 82-90 .
![]() | |
24. |
张世阔,王力,李秀山,豆旭谦,田广生,张振雷,魏涛. 煤矿井下硬岩气动冲击回转钻进技术与装备. 煤炭技术. 2022(11): 5-8 .
![]() | |
25. |
李喜员,孙矩正,张益民,魏风清. 固液两相复合封孔技术在瓦斯抽采中的应用. 矿业安全与环保. 2022(05): 131-134 .
![]() | |
26. |
豆旭谦,姚宁平,李秀山,王力,张凯,魏宏超. 基于单柱齿破岩过程的高压液动冲击回转钻进试验研究. 煤田地质与勘探. 2022(12): 170-176 .
![]() | |
27. |
梁为民,李晓鹏,李敏敏. 冲击荷载作用下各向异性煤体中大孔结构变化规律研究. 煤炭科学技术. 2022(11): 100-109 .
![]() |