WU Yangxu,CHEN Ping,LI Bo. Location of underground microseismic source based on 3D two-stream network[J]. Coal Science and Technology,2023,51(S2):13−24
. DOI: 10.13199/j.cnki.cst.2022-0395Citation: |
WU Yangxu,CHEN Ping,LI Bo. Location of underground microseismic source based on 3D two-stream network[J]. Coal Science and Technology,2023,51(S2):13−24 . DOI: 10.13199/j.cnki.cst.2022-0395 |
The detection technology of the microseismic source center of underground damage is mainly used for the location of the underground damage, positioning of explosion point of artillery shells in weapon testing ground. Aiming at the problem that clock error of microseismic acquisition sensor and the lack of high frequency information of acquisition data, this paper proposes a distributed microseismic source location for underground damage based on 3D two-stream network. The method uses spatial scanning to make the low-dimensional vibration wave information highly dimensional, transforms the seismic waveform data from the time domain into the energy domain, and establishes the correspondence between the source center and the high-dimensional energy distribution. Then, the energy domain features are extracted through the 3D-CNN network, and the LSTM network gradually optimizes the focal center region to obtain accurate focal center location. The results show that the source location of underground damage microseismic based on 3D dual-current network is obviously superior to the traditional traveltime-like source location method, and the proposed method has stronger data fitting ability and anti-interference ability in high SNR data. The results of static explosion test in small field show that the proposed method is superior to the traditional method in near field microseismic source location.
[1] |
吴顺川,郭 超,高永涛,等. 岩体破裂震源定位问题探讨与展望[J]. 岩石力学与工程学报,2021,40(5):18−25. doi: 10.13722/j.cnki.jrme.2020.0710
WU Shunchuan,GUO Chao,GAO Yongtao,et al. Discussion and prospect of source location of rock fracture[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(5):18−25. doi: 10.13722/j.cnki.jrme.2020.0710
|
[2] |
CHENG Jiulong,SONG Guangdong,SUN Xiaoyun,et al. Research developments and prospects on microseismic source location in mines[J]. Engineering,2018,4(5):159−174.
|
[3] |
徐 港,薛传荣,王鑫科,等. 考虑地震波折射的层状介质微震源定位方法[J]. 岩石力学与工程学报,2021,40(8):10−20. doi: 10.13722/j.cnki.jrme.2020.1167
XU Gang,XUE Chuanrong,WANG Xinke,et al. A microseismic source location method considering refraction of seismic waves in layered media[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(8):10−20. doi: 10.13722/j.cnki.jrme.2020.1167
|
[4] |
余洋洋,梁春涛,杜 瑶,等. 基于微地震定位与震源机制联合反演算法分析页岩气水力压裂效果及应力状态[J]. 中国地震,2021,37(2):12−25.
YU Yangyang,LIANG Chuntao,DU Yao,et al. Analysis of shale gas hydraulic fracturing effect and stress state based on joint inversion algorithm(JSSA) of microseismic locationand focal mechanism[J]. Earthquake Research in China,2021,37(2):12−25.
|
[5] |
王 辉,梁 苗,朱梦博. 基于单纯形-最短路径射线追踪的微震震源混合定位算法[J]. 中国矿业,2020,29(10):7−17.
WANG Hui,LIANG Miao,ZHU Mengbo,et al. A hybrid microseismic source location algorithm based on simplex and shortest path ray tracing[J]. China Mining Magazine,2020,29(10):7−17.
|
[6] |
王 瑜. 基于双差微地震震源定位法及应用研究[J]. 化工管理, 2020, 21(1): 2−12.
WANG Yu. Research on source location method and application based on double difference microearthquake[J] Chemical Management, 2020, 21(1): 2−12.
|
[7] |
ZHANG Q,MAO W,FANG J. Elastic full waveform inversion with source-independent crosstalk-free source-encoding algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing,2020,58(4):2915−2927. doi: 10.1109/TGRS.2019.2957829
|
[8] |
LI Y,XU F. All-phase fast Fourier transform and multiple cross-correlation analysis based on Geiger iteration for acoustic emission sources localization in complex metallic structures[J]. Structural Health Monitoring,2021,8(1):1−15.
|
[9] |
DONG L,HU Q,X TONG,et al. Velocity-free MS/AE source location method for three-dimensional hole-containing structures[J]. Engineering,2020,6(7):1−15.
|
[10] |
CHAI C,MACEIRA M,SANTOS V,et al. Using a deep neural network and transfer learning to bridge scales for seismic phase picking[J]. Geophysical Research Letters,2020,47(16):1−20.
|
[11] |
薛清峰. 基于波动方程的微地震震源位置, 震源时间及介质各向异性参数联合反演[J]. 中国地震,2021,37(2):15−25.
XUE Qingfeng. Wave equation based joint inversion of microseismic source location, source excitation time and anisotropic parameters of the VTI media[J]. Earthquake Research in China,2021,37(2):15−25.
|
[12] |
毛庆辉,程健勇,岳曙耀,等. 基于不同波形叠加函数的井中微地震震源偏移定位方法对比[J]. 长江大学学报自然科学版,2020,17(1):6−16.
MAO Qinghui,CHENG Jianyong,YUN Shuyao,et al. Comparison of migration-basedLocation methods of downhole microseismic source basedon different waveform stack functions[J]. Journal of Yangtze University,2020,17(1):6−16.
|
[13] |
LIANG C,YU Y,WU F,et al. Local stress field inverted for a shale gas play based on focal mechanisms determined from the joint source scanning algorithm[J]. Acta Seismologica Sinica,2021,34(3):12−22.
|
[14] |
ROSS Z E, MEIER M A, HAUKSSON E, et al. 利用深度学习进行P波到时拾取和初动极性判定[J]. 世界地震译丛, 2020, 51(2): 132−143.
ROSS Z E, MEIER M A, HAUKSSON E, et al. P wave arrival picking and first-motion polarity determination with deep learning[J]. Geophys. Res. : Solid Earth. 2020, 123: 5120−5129.
|
[15] |
毛海波,马俊彦,王晓涛,等. 基于自适应字典学习的可控震源数据谐波噪声压制方法[J]. 石油物探,2020,59(5):11−22. doi: 10.3969/j.issn.1000-1441.2020.05.006
MAO Haibo,MA Junyan,WANG Xiaotao,et al. Harmonic noise suppression of vibroseis data based on adaptive dictionary learning[J]. Geophysical Prospecting for Petroleum,2020,59(5):11−22. doi: 10.3969/j.issn.1000-1441.2020.05.006
|
[16] |
国运东, 黄建平, 崔 超, 等. 基于K-SVD字典学习的稀疏约束编码多震源方向: 全波形反演[J]. 应用地球物理(英文版), 2020, 17(1): 14−24.
GUO Yundong, HUANG Jianping, CUI Chao, et al. Sparse constrained encoding multi-source full waveform inversion method based on K-SVD dictionary learning[J] Applied Geophysics, 2020, 17(1): 14−24.
|
[17] |
李薇薇, 龚仁彬, 周相广, 等. 基于深度学习UNet++网络的初至波拾取方法[J]. 地球物理学进展, 2021, 36(1): 8−19.
LI Weiwei, GONG Renbin, ZHOU Xiangguang et al. UNet++: a deep neural network based seismic arrival time picking method[j]. Progress in Geophysics, 2021, 36(1): 8−19.
|
[18] |
KAMNITSAS K,LEDIG C,NEWCOMBE V,et al. Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation[J]. Medical Image Analysis,2016,36(61):1−10.
|
[19] |
PENG Y,TAO H,LI W,et al. Dynamic gesture recognition based on feature fusion network and variant ConvLSTM[J]. IET Image Processing,2020,2(1):1−15. doi: 10.36548/jiip.2020.1.001
|
[20] |
AGHAMIRY H S,GHOLAMI A,OPERTO S,et al. ADMM-based full-waveform inversion for microseismic imaging[J]. Geophysical Journal International,2021,1(1):1−12.
|