Advance Search
WEI Yingchun,LI Xin,CAO Daiyong,et al. Cooperative exploration methods of coal and strategic metal resources in coal-bearing strata[J]. Coal Science and Technology,2023,51(12):27−29. doi: 10.12438/cst.2023-1115
Citation: WEI Yingchun,LI Xin,CAO Daiyong,et al. Cooperative exploration methods of coal and strategic metal resources in coal-bearing strata[J]. Coal Science and Technology,2023,51(12):27−29. doi: 10.12438/cst.2023-1115

Cooperative exploration methods of coal and strategic metal resources in coal-bearing strata

  • Strategic metal resources are irreplaceable for new materials, new energy, information technology, aerospace, national defense and other emerging industries, traditional strategic metal mineral resources have relatively few reserves and high supply risks. The Strategic metal resources in coal-bearing strata are used as an important supplement and have become an important direction of new strategic metal resources exploration, therefore, based on the basic characteristics of coal and strategic metal resources in coal-bearing strata, it is urgent to carry out research on collaborative exploration methods for coal and strategic metal resources in coal-bearing strata. This article is based on previous research results and focuses on coal and strategic metal resources in coal-bearing strata (uranium, lithium, gallium, germanium, niobium-zirconium-gallium-rare earth), the study has summarized the main combination types of coal and strategic metal resources in coal-bearing strata, and explored the cooperative exploration methods of coal and strategic metal resources in coal-bearing strata. From the perspective of the occurrence position of coal and strategic metal resources in coal-bearing strata, the main combination types of coal and strategic metal resources in coal-bearing strata are summarized, including coal-uranium deposits, coal-lithium deposits, coal-gallium deposits, coal-germanium deposits, coal-niobium-zirconium-gallium-rare earth deposits. According to the differences in physical properties of different rocks and minerals, the response principles and characteristics of different exploration techniques and methods were summarized. Based on distribution law and occurrence horizon of coal and strategic metal resources in coal-bearing strata, the geological, geochemical and geophysical conditions of coal and strategic metal resources in coal-bearing strata are discussed, the basic characteristics of the main combination types have been summarized. From the perspective of coordination of multi-mineral exploration and coordination of various exploration technologies, based on the exploration technology and method of coal and strategic metal resources in coal-bearing strata, following the principle of maximization of economic benefit and optimization of exploration methods, a reasonable cooperative exploration method for coal and strategic metal resources in coal-bearing strata is proposed. Based on the radioactive characteristics of uranium deposits, the cooperative exploration of coal-uranium deposits should strengthen the cooperative application of remote sensing, geological mapping, radioactive exploration methods (gamma total, gamma spectrum, radon and its daughter measurement and gamma logging), deep penetrating geochemical, ground geophysical prospecting (high-precision magnetic/seismic/electromagnetic), drilling engineering, logging and rock geochemical methods. Based on the dispersion and occurrence location of lithium and gallium, the collaborative exploration of coal-lithium and gallium deposits should strengthen the collaborative application of remote sensing, geological mapping, mountain engineering, high-precision seismic, drilling engineering, logging and rock geochemical methods. Based on the symbiotic minerals of coal-germanium and the occurrence of germanium in organic matter, the collaborative exploration of coal-germanium deposits should strengthen the collaborative application of remote sensing, geological mapping, mountain engineering, drilling engineering, logging and rock geochemical methods. Based on the high field intensity characteristics of niobium, zirconium, gallium and rare earth associated elements, the collaborative exploration of coal-niobium-zirconium-gallium-rare earth deposits should strengthen the collaborative application of remote sensing, geological mapping, mountain engineering, drilling engineering, logging (natural gamma) and rock geochemical methods.
  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return