WEI Yingchun,LI Xin,CAO Daiyong,et al. Cooperative exploration methods of coal and strategic metal resources in coal-bearing strata[J]. Coal Science and Technology,2023,51(12):27−29
. DOI: 10.12438/cst.2023-1115Citation: |
WEI Yingchun,LI Xin,CAO Daiyong,et al. Cooperative exploration methods of coal and strategic metal resources in coal-bearing strata[J]. Coal Science and Technology,2023,51(12):27−29 . DOI: 10.12438/cst.2023-1115 |
Strategic metal resources are irreplaceable for new materials, new energy, information technology, aerospace, national defense and other emerging industries, traditional strategic metal mineral resources have relatively few reserves and high supply risks. The Strategic metal resources in coal-bearing strata are used as an important supplement and have become an important direction of new strategic metal resources exploration, therefore, based on the basic characteristics of coal and strategic metal resources in coal-bearing strata, it is urgent to carry out research on collaborative exploration methods for coal and strategic metal resources in coal-bearing strata. This article is based on previous research results and focuses on coal and strategic metal resources in coal-bearing strata (uranium, lithium, gallium, germanium, niobium-zirconium-gallium-rare earth), the study has summarized the main combination types of coal and strategic metal resources in coal-bearing strata, and explored the cooperative exploration methods of coal and strategic metal resources in coal-bearing strata. From the perspective of the occurrence position of coal and strategic metal resources in coal-bearing strata, the main combination types of coal and strategic metal resources in coal-bearing strata are summarized, including coal-uranium deposits, coal-lithium deposits, coal-gallium deposits, coal-germanium deposits, coal-niobium-zirconium-gallium-rare earth deposits. According to the differences in physical properties of different rocks and minerals, the response principles and characteristics of different exploration techniques and methods were summarized. Based on distribution law and occurrence horizon of coal and strategic metal resources in coal-bearing strata, the geological, geochemical and geophysical conditions of coal and strategic metal resources in coal-bearing strata are discussed, the basic characteristics of the main combination types have been summarized. From the perspective of coordination of multi-mineral exploration and coordination of various exploration technologies, based on the exploration technology and method of coal and strategic metal resources in coal-bearing strata, following the principle of maximization of economic benefit and optimization of exploration methods, a reasonable cooperative exploration method for coal and strategic metal resources in coal-bearing strata is proposed. Based on the radioactive characteristics of uranium deposits, the cooperative exploration of coal-uranium deposits should strengthen the cooperative application of remote sensing, geological mapping, radioactive exploration methods (gamma total, gamma spectrum, radon and its daughter measurement and gamma logging), deep penetrating geochemical, ground geophysical prospecting (high-precision magnetic/seismic/electromagnetic), drilling engineering, logging and rock geochemical methods. Based on the dispersion and occurrence location of lithium and gallium, the collaborative exploration of coal-lithium and gallium deposits should strengthen the collaborative application of remote sensing, geological mapping, mountain engineering, high-precision seismic, drilling engineering, logging and rock geochemical methods. Based on the symbiotic minerals of coal-germanium and the occurrence of germanium in organic matter, the collaborative exploration of coal-germanium deposits should strengthen the collaborative application of remote sensing, geological mapping, mountain engineering, drilling engineering, logging and rock geochemical methods. Based on the high field intensity characteristics of niobium, zirconium, gallium and rare earth associated elements, the collaborative exploration of coal-niobium-zirconium-gallium-rare earth deposits should strengthen the collaborative application of remote sensing, geological mapping, mountain engineering, drilling engineering, logging (natural gamma) and rock geochemical methods.
[1] |
代世峰,赵 蕾,魏 强,等. 中国煤系中关键金属资源:富集类型与分布[J]. 科学通报,2020,65(33):3715−3729. doi: 10.1360/TB-2020-0112
DAI Shifeng,ZHAO Lei,WEI Qiang, et al. Resources of critical metals in coal-bearing sequences in China:types and distribution[J]. Chinese Science Bulletin,2020,65(33):3715−3729. doi: 10.1360/TB-2020-0112
|
[2] |
代世峰,刘池洋,赵 蕾,等. 煤系中战略性金属矿产资源:意义和挑战[J]. 煤炭学报,2022,47(5):1743−1749.
DAI Shifeng,LIU Chiyang,ZHAO Lei, et al. Strategic metal resources in coal-bearing strata:significance and challenges[J]. Journal of China Coal Society,2022,47(5):1743−1749.
|
[3] |
代世峰,任徳贻,周义平,等. 煤型稀有金属矿床:成因类型、赋存状态和利用评价[J]. 煤炭学报,2014,39(8):1707−1715.
DAI Shifeng,REN Deyi,ZHOU Yiping, et al. Coal-hosted rare metal deposits:genetic types,modes of occurrence,and utilization evaluation[J]. Journal of China Coal Society,2014,39(8):1707−1715.
|
[4] |
DAI Shifeng,YAN Xiaoyun,WARD Colin R, et al. Valuable elements in Chinese coals:a review[J]. International Journal of Coal Geology,2016,60(5/6):590−620.
|
[5] |
DAI S,NECHAEV V P,CHEKRYZHOV I Y, et al. A model for Nb-Zr-REE-Ga enrichment in Lopingian altered alkaline volcanic ashes:key evidence of H-O isotopes[J]. Lithos,2018,302-303:359−369. doi: 10.1016/j.lithos.2018.01.005
|
[6] |
蒋少涌,温汉捷,许 成,等. 关键金属元素的多圈层循环与富集机理:主要科学问题及未来研究方向[J]. 中国科学基金,2019,30(2):112−118.
JIANG Shaoyong,WEN Hanjie,XU Cheng, et al. Earth sphere cycling and enrichment mechanism of critical metals:major scientific issues for future research[J]. China Science Foundation,2019,30(2):112−118.
|
[7] |
翟明国,吴福元,胡瑞忠,等. 战略性关键金属矿产资源:现状与问题[J]. 中国科学基金,2019,30(2):106−111.
ZHAI Mingguo,WU Fuyuan,HU Ruizhong, et al. Critical metal mineral resources:current research status and scientific issues[J]. China Science Foundation,2019,30(2):106−111.
|
[8] |
曹代勇,魏迎春,秦国红,等. 煤系战略性金属元素富集成矿的构造控制[J]. 煤田地质与勘探,2023,51(1):66−85.
CAO Daiyong,WEI Yingchun,QIN Guohong, et al. Tectonic control on enrichment and metallogenesis of strategic metal elements in coal measures[J]. Coal Geology & Exploration,2023,51(1):66−85.
|
[9] |
宁树正,黄少青,朱士飞,等. 中国煤中金属元素成矿区带[J]. 科学通报,2019,64(24):2501−2513. doi: 10.1360/N972019-00377
NING Shuzheng,HUANG Shaoqing,ZHU Shifei, et al. Mineralization zoning of coal-metal deposits in China[J]. Chinese Science Bulletin,2019,64(24):2501−2513. doi: 10.1360/N972019-00377
|
[10] |
宁树正,邓小利,李聪聪,等. 中国煤中金属元素矿产资源研究现状与展望[J]. 煤炭学报,2017,42(9):2214−2225.
NING Shuzheng,DENG Xiaoli,LI Congcong, et al. Research status and prospect of metal element mineral resources in China[J]. Journal of China Coal Society,2017,42(9):2214−2225.
|
[11] |
徐水师,王 佟,孙升林,等. 中国煤炭资源综合勘查技术新体系架构[J]. 中国煤炭地质,2009,21(6):1−5. doi: 10.3969/j.issn.1674-1803.2009.06.001
XU Shuishi,WANG Tong,SUN Shenglin, et al. New architecture of integrated coal resource exploration technology in China[J]. Coal Geology of China,2009,21(6):1−5. doi: 10.3969/j.issn.1674-1803.2009.06.001
|
[12] |
CAO D,LIN Z,Wei Y, et al. Types and models of coal-deposit exploration in China[J]. Energy Exploration & Exploitation,2011,29(4):495−515.
|
[13] |
曹代勇,李小明,占文锋,等. 深部煤炭资源勘查模式及其构造控制[J]. 中国煤炭地质,2008,20(10):18−21. doi: 10.3969/j.issn.1674-1803.2008.10.005
CAO Daiyong,LI Xiaoming,ZHAN Wenfeng, et al. Exploration mode and structural control of deep coal resources[J]. Coal Geology of China,2008,20(10):18−21. doi: 10.3969/j.issn.1674-1803.2008.10.005
|
[14] |
曹代勇,李小明,宁树正,等. 中国东部深化找煤的思路和方法[J]. 现代地质,2009,23(2):347−352.
CAO Daiyong,LI Xiaoming,NING Shuzheng, et al. Thoughts and methods for strengthening coal prospecting in the eastern China[J]. Geoscience,2009,23(2):347−352.
|
[15] |
魏迎春,曹代勇,夏永翊,等. 复杂地质条件区煤炭资源勘查方法探讨[J]. 煤炭工程,2014,46(3):115−117.
WEI Yingchun,CAO Daiyong,XIA Yongyi, et al. Discussion on exploration methods of coal resources in areas with complex geologic conditions[J]. Coal Engineering,2014,46(3):115−117.
|
[16] |
李增学,王东东,吕大炜,等. 煤系矿产类型及协同勘查研究进展:兼论煤地质学一些概念的规范化问题[J]. 煤炭科学技术,2018,46(4):164−176,201.
LI Zengxue,WANG Dongdong,LYU Dawei, et al. Study progress on coal measure mineral type and coordinated exploration:discussion on conception standardized issues of coal geology[J]. Coal Science and Technology,2018,46(4):164−176,201.
|
[17] |
李增学,王 佟,王怀洪,等. 多能源矿产协同勘查理论与技术体系研究[J]. 中国煤炭地质,2011,23(4):68−72.
LI Zengxue,WANG Tong,WANG Huaihong, et al. Theory and technical system study on multiple energy mineral resources exploration in coordination[J]. Coal Geology of China,2011,23(4):68−72.
|
[18] |
杨伟利,王 毅,王传刚,等. 鄂尔多斯盆地多种能源矿产分布特征与协同勘探[J]. 地质学报,2010,84(4):579−586.
YANG Weili,WANG Yi,WANG Chuangang, et al. Distribution and co-exploration of multiple energy minerals in Ordos basin[J]. Acta Geologica Sinica,2010,84(4):579−586.
|
[19] |
王 毅,杨伟利,邓 军,等. 多种能源矿产同盆共存富集成矿(藏)体系与协同勘探:以鄂尔多斯盆地为例[J]. 地质学报,2014,88(5):815−823.
WANG Yi,YANG Weili,DENG Jun, et al. Accumulation system of cohabitating multi-energy minerals and their comprehensive exploration in sedi-mentary basin-a case study of Ordos basin,NW China[J]. Acta Geologica Sinica,2014,88(5):815−823.
|
[20] |
王怀洪,张心彬,王勇军,等. 黄河北巨厚覆盖区多矿种协同勘查理论与技术体系研究进展[J]. 中国煤炭地质,2020,32(9):150−154, 166.
WANG Huaihong,ZHANG Xinbin,WANG Yongjun, et al. Progress in research on multi-mineral co-exploration theory and technology system in mega thick overburden area to the north of Yellow River[J]. Coal Geology of China,2020,32(9):150−154, 166.
|
[21] |
王 佟,韩效忠,邓 军,等. 论中国煤炭地质勘查工作在新条件下的定位与重大研究问题[J]. 煤田地质与勘探,2023,51(2):27−44.
WANG Tong,HAN Xiaozhong,DENG Jun, et al. Orientation and major research problems of coal geological exploration in China under new conditions[J]. Coal Geology & Exploration,2023,51(2):27−44.
|
[22] |
王 佟,孙 杰,江 涛,等. 煤炭生态地质勘查基本构架与科学问题[J]. 煤炭学报,2020,45(1):276−284.
WANG Tong,SUN Jie,JIANG Tao, et al. Basic configuration and scientific problems of coal eco-geological survey[J]. Journal of China Coal Society,2020,45(1):276−284.
|
[23] |
魏迎春,曹代勇,孙雨晴,等. 煤系矿产资源综合勘查模式研究[C]//中国地球物理学会. 首届全国矿产勘查大会论文集, 2021: 239−242.
WEI Yingchun,CAO Daiyong,SUN Yuqing,et al. Research on the comprehensive exploration model of coal measures mineral resources[C]//Chinese Geophysical Society. Proceedings of the First National Mineral Exploration Conference, 2021:239−242.
|
[24] |
曹代勇,秦国红,张 岩,等. 含煤岩系矿产资源类型划分及组合关系探讨[J]. 煤炭学报,2016,41(9):2150−2155.
CAO Daiyong,QIN Guohong,ZHANG Yan, et al. Classification and combination relationship of mineral resources in coal measures[J]. Journal of China Coal Society,2016,41(9):2150−2155.
|
[25] |
魏迎春,曹代勇,宁树正,等. 鄂尔多斯盆地煤系矿产资源赋存规律研究进展[J]. 中国煤炭地质,2018,30(6):14−20. doi: 10.3969/j.issn.1674-1803.2018.06.03
WEI Yingchun,CAO Daiyong,NING Shuzheng, et al. Research progress of coal measures mineral resource hosting patterns in Ordos Basin[J]. Coal Geology of China,2018,30(6):14−20. doi: 10.3969/j.issn.1674-1803.2018.06.03
|
[26] |
秦国红,曹代勇,魏迎春,等. 基于综合勘查的煤系矿产资源组合类型研究[J]. 煤田地质与勘探,2018,46(5):97−101.
QIN Guohong,CAO Daiyong,WEI Yingchun, et al. Combination relationship of mineral resources in coal measures for comprehensive exploration[J]. Coal Geology & Exploration,2018,46(5):97−101.
|
[27] |
向伟东,方锡珩,李田港,等. 鄂尔多斯盆地东胜铀矿床成矿特征与成矿模式[J]. 铀矿地质,2006,22(5):257−266.
XIANG Weidong,FANG Xiheng,LI Tiangang, et al. Metallogenic characteristics and model of Dongsheng uranium deposit in Ordos Basin,North China[J]. Uranium Geology,2006,22(5):257−266.
|
[28] |
杨仁超,韩作振,柳益群,等. 鄂尔多斯盆地东胜地区侏罗系煤与铀矿关系[J]. 地球科学与环境学报,2006,28(4):31−37.
YANG Renchao,HAN Zuozhen,LIU Yiqun, et al. Relationship between Jurassic coal measures and uranium deposits in Dongsheng area,Ordos Basin[J]. Journal of Earth Sciences and Environment,2006,28(4):31−37.
|
[29] |
罗晶晶,李艳青,庞 康,等. 鄂尔多斯盆地大营砂岩型铀矿古层间氧化带地球化学特征[J]. 铀矿地质,2018,34(5):280−287.
LUO Jingjing,LI Yanqing,PANG Kang, et al. Geo-chemical characteristics of paleo-interlayer oxidation zone in Daying uranium depoit in Ordos Basin[J]. Uranium Geology,2018,34(5):280−287.
|
[30] |
王 军,耿树方. 伊犁盆地库捷尔太铀矿床层间氧化带与铀矿化特征研究[J]. 中国地质,2009,36(3):705−713.
WANG Jun,GENG Shufang. Characteristics of the interlayer oxidation zone and the Kujieertai uranium deposit in Yili Basin[J]. Geology in China,2009,36(3):705−713.
|
[31] |
王毛毛,李 华,邱余波. 新疆伊犁盆地洪海沟地区煤岩型铀成矿分析[J]. 中国煤炭地质,2015,27(12):12−16.
WANG Maomao,LI Hua,QIU Yubo. Coal-type uranium metallogenic analysis in Honghaigou area,Ili Basin,Xinjiang[J]. Coal Geology of China,2015,27(12):12−16.
|
[32] |
朱士飞,曹 泊,吴国强,等. 广西上林万福矿区煤中锂、镓和稀土元素逐级提取实验研究[J]. 中国煤炭地质,2021,33(9):38−41.
ZHU Shifei,CAO Bo,WU Guoqiang, et al. Experimental study of coal lithium,gallium and REE stepwise extraction in Wanfu mine area,Shanglin,Guangxi[J]. Coal Geology of China,2021,33(9):38−41.
|
[33] |
SUN Beilei,LIU Yunxia,TAJCMANOVA Lucie, et al. In-situ analysis of the lithium occurrence in the No. 11 coal from the Antaibao mining district,Ningwu Coalfield,northern China[J]. Ore Geology Reviews,2022,144:104825.
|
[34] |
宁树正,等. 中国煤中金属元素矿产资源[M]. 北京:科学出版社,2019.
|
[35] |
张淑苓,王淑英,尹金双. 云南帮卖盆地含铀煤中锗存在形式的研究[J]. 中国核科技报告,1988,93−104.
ZHANG Shuling,WANG Shuying,YIN Jinshuang. A study on the forms of existence of germanium in uranium-bearing coals Bangmai basin of Yunnan[J]. China Nuclear Science and Technology Report,1988,93−104.
|
[36] |
武 文,莫若平,王志民. 伊敏煤田锗资源赋存特征及地质工作建议[J]. 内蒙古地质,2002(1):27−30.
WU Wen,MO Ruoping,WANG Zhimin. Occurrence features and geological work of gemanium resource in Yimin coalfield,Inner Mongolia[J]. Geology of Inner Mongolia,2002(1):27−30.
|
[37] |
黄文辉,孙 磊,马延英,等. 内蒙古自治区胜利煤田锗矿地质及分布规律[J]. 煤炭学报,2007,32(11):1147−1151.
HUANG Wenhui,SUN Lei,MA Yanying, et al. Distribution and geological feature of the Coal-Ge deposit of Shengli coalfield in Inner Mongolia of China[J]. Journal of China Coal Society,2007,32(11):1147−1151.
|
[38] |
赵利信. 滇东北晚二叠世煤型铌矿床的元素富集成矿机理[D]. 北京: 中国矿业大学(北京),2016.
ZHAO Lixin. Enrichment mechanism of rare metals in coal-hosted niobium predominated polymetallic ore deposit from the Late Permian strata,northeastern Yunnan province,southwest China[D]. Beijing: China University of Mining & Technology-Beijing,2016.
|
[39] |
李 霄. 滇东宣威晚二叠世含煤岩系中火山灰的物质组成与来源[D]. 北京: 中国矿业大学(北京),2015.
LI Xiao. Mineral matter characteristic and sources of volcanic ash in the Late Permian coal-bearing strata from Xuanwei,eastern Yunnan[D]. Beijing: China University of Mining & Technology-Beijing,2015.
|
[40] |
魏 强,代世峰. 中国煤型锗矿床中的关键金属和有害元素赋存特征与富集成因[J]. 煤炭学报,2020,45(1):296−303.
WEI Qiang,DAI Shifeng. Critical metals and hazardous elements in the coal-hosted germanium ore deposits of China:occurrence characteristics and enrichment causes[J]. Journal of China Coal Society,2020,45(1):296−303.
|
[41] |
王佩佩. 滇东黔西晚二叠世煤中矿物及微量元素富集分异机理[D]. 北京: 中国矿业大学(北京),2017.
WANG Peipei. Enrichment and differentiation mechanism of minerals and trace elements in the Late Permian coals from eastern Yunnan and western Guizhou Province[D]. Beijing: China University of Mining & Technology-Beijing,2017.
|
[42] |
贺金鑫,梁晓军,路来君,等. 内蒙古大营铀矿区高光谱遥感蚀变信息提取[J]. 吉林大学学报(信息科学版),2017,35(2):153−157.
HE Jinxin,LIANG Xiaojun,LU Laijun, et al. Extraction of hyperspectral remote sensing alteration information in Daying uranium deposit Inner Mongolia[J]. Journal of Jilin University (Information Science Edition),2017,35(2):153−157.
|
[43] |
梁晓军. 基于多/高光谱遥感的内蒙古大营铀矿区蚀变信息提取[D]. 长春: 吉林大学,2017.
LIANG Xiaojun. Extraction of alteration information of Daying uranium deposit in Inner Mongolia based on multispectral/hyperspectral remote sensing data[D]. Changchun: Jilin University,2017.
|
[44] |
朱士飞,曹 泊,王 佟,等. 广西上林县万福矿区煤中稀土元素地球化学特征[J]. 中国煤炭地质,2020,32(9):64−69.
ZHU Shifei,CAO Bo,WANG Tong, et al. Geochemical features of coal ree in Wanfu coalmine area,Shanglin county,Guangxi[J]. Coal Geology of China,2020,32(9):64−69.
|
[45] |
LI B,ZHANG F,LIAO J, et al. Geological controls on geochemical anomaly of the carbonaceous mudstones in Xian’an Coalfield,Guangxi Province,China[J]. Energies,2022,15(14):5196. doi: 10.3390/en15145196
|
[46] |
黄文辉,万 欢,杜 刚,等. 内蒙古自治区胜利煤田煤-锗矿床元素地球化学性质研究[J]. 地学前缘,2008,15(4):56−64. doi: 10.1016/S1872-5791(08)60039-1
HUANG Wenhui,WAN Huan,DU Gang, et al. Research on elemental geochemical characteristics of coal-Ge deposit in Shengli coalfield,Inner Mongolia,China[J]. Earth Science Frontiers,2008,15(4):56−64. doi: 10.1016/S1872-5791(08)60039-1
|
[47] |
孙启隆,内蒙古乌兰图嘎煤锗矿床分布规律与控制因素研究[D]. 武汉: 中国地质大学,2021.
SUN Qilong. Research on the distribution regularity and controlling factors of coal-germanium deposit in Wulantuga of Shengli coalfield,in Inner Mongolia[D]. Wuhan: China University of Geosciences,2021.
|
[48] |
ZHAO L,DAI S,GRAHAM I T, et al. New insights into the lowest Xuanwei Formation in eastern Yunnan Province,SW China:implications for Emeishan large igneous province felsic tuff deposition and the cause of the end-Guadalupian mass extinction[J]. Lithos,2016,264:375−391. doi: 10.1016/j.lithos.2016.08.037
|
[49] |
ZHOU Y,BOHOR B F,REN Y. Trace element geochemistry of altered volcanic ash layers(tonsteins)in Late Permian coal-bearing formations of eastern Yunnan and western Guizhou Provinces,China[J]. International Journal of Coal Geology,2000,44(3-4):305−324. doi: 10.1016/S0166-5162(00)00017-3
|
[50] |
周义平,任友谅. 滇东黔西晚二叠世煤系中火山灰蚀变黏土岩的元素地球化学特征[J]. 沉积学报,1994,12(2):123−132.
ZHOU Yiping,REN Youliang. Element geochemistry of volcanic ash derived tonsteins in Late-Permian coal-bearing formation of eastern Yunnan and western Guizhou,China[J]. Acta Sedimentologica Sinica,1994,12(2):123−132.
|
[51] |
周义平. 中国西南龙潭早期碱性火山灰蚀变的TONSTEINS[J]. 煤田地质与勘探,1999,27(4):6−10.
ZHOU Yiping. The synsedimentary alkalinity-volcanic ash derived tonsteins of early Longtan age in southwestern China[J]. Coal Geology & Exploration,1999,27(4):6−10.
|
[52] |
DAI S,LUO Y,SEREDIN V V, et al. Revisiting the late Permian coal from the Huayingshan,Sichuan,southwestern China:Enrichment and occurrence modes of minerals and trace elements[J]. International Journal of Coal Geology,2014,122:110−128. doi: 10.1016/j.coal.2013.12.016
|
[53] |
SPEARS D A. The origin of tonsteins,an overview,and links with seatearths,fireclays and fragmental clay rocks[J]. International Journal of Coal Geology,2012,94:22−31. doi: 10.1016/j.coal.2011.09.008
|
[54] |
SPEARS D A,RICE C M. An Upper Carboniferous tonstein of volcanic origin[J]. Sedimentology,1973,20(2):281−294. doi: 10.1111/j.1365-3091.1973.tb02050.x
|
[55] |
ZHAO L,WARD C R,FRENCH D, et al. Mineralogical composition of Late Permian coal seams in the Songzao coalfield,southwestern China[J]. International Journal of Coal Geology,2013,116/117:208−226. doi: 10.1016/j.coal.2013.01.008
|
[56] |
代世峰,周义平,任德贻,等. 重庆松藻矿区晚二叠世煤的地球化学和矿物学特征及其成因研究[J]. 中国科学(D辑:地球科学),2007,37(3):353−362.
DAI Shifeng,ZHOU Yiping,REN Deyi, et al. Geochemical and mineralogical characteristics and genesis of Late Permian coal in Songzao Mining Area,Chongqing[J]. Scientia Sinica (Terrae),2007,37(3):353−362.
|
[57] |
吴玉琦. 重庆松藻矿区龙潭组沉积相特征及聚煤特征分析[D]. 成都: 成都理工大学,2022.
WU Yuqi. Analysis of sedimentary facies and coal accumulation characteristics of Longtan formation in Chongqing Songzao mining area [D]. Chengdu: Chengdu University of Technology,2022.
|
[58] |
DAI S,ZHOU Y,ZHANG M, et al. A new type of Nb (Ta)-Zr (Hf)-REE-Ga polymetallic deposit in the late Permian coal-bearing strata,eastern Yunnan,southwestern China:possible economic significance and genetic implications[J]. International Journal of Coal Geology,2010,83(1):55−63. doi: 10.1016/j.coal.2010.04.002
|
[59] |
刘福胜,蔡旭梅,李晓静,等. 能源岩系多种矿产资源绿色协同勘查系统构建[J]. 中国煤炭地质,2022,34(2):14−18.
LIU Fusheng,CAI Xumei,LI Xiaojing, et al. Poly-mineralic resources green cooperative exploration system structuring in energy rock series[J]. Coal Geology of China,2022,34(2):14−18.
|
[60] |
侯慎健,王 佟,张 博,等. 对新时代中国煤炭资源勘查工作发展思路的探讨[J]. 西安科技大学学报,2019,39(2):341−346.
HOU Shenjian,WANG Tong,ZHANG Bo, et al. Development of China’s coal resources exploration in the new era[J]. Journal of Xi’an University of Science and Technology,2019,39(2):341−346.
|
[61] |
董守华,张凤威,王连元,等. 煤田测井方法和原理[M]. 徐州:中国矿业大学出版社,2012.
|
[62] |
曹代勇,魏迎春. 煤炭地质勘查与评价[M]. 徐州:中国矿业大学出版社,2007.
|
[63] |
李 涛,邓小卫,赵军辉. 铀矿伽玛测井解释软件开发研究[J]. 物探化探计算技术,2017,39(1):144−154. doi: 10.3969/j.issn.1001-1749.2017.01.21
LI Tao,DENG Xiaowei,ZHAO Junhui. Research on software development explain uranium gamma logging[J]. Computing Techniques for Geophysical and Geochemical Exploration,2017,39(1):144−154. doi: 10.3969/j.issn.1001-1749.2017.01.21
|
[64] |
于 洋,王祝文,宁琴琴,等. 松辽盆地大庆长垣四方台组可地浸砂岩铀成矿测井评价[J]. 吉林大学学报(地球科学版),2020,50(3):929−940.
YU Yang,WANG Zhuwen,NING Qinqin, et al. Logging evaluation of in-situ leachable sandstone uranium mineralization in Sifangtai formation of Daqing Placanticline,Songliao Basin[J]. Journal of Jilin University(Earth Science Edition),2020,50(3):929−940.
|
[65] |
SCHOLES P L,DAVE J. Coalbed methane applications of wireline logs[J]. AAPG Studies in Geology,1993,38:287−302.
|
[66] |
王家跃,郎白秋,汪清浩. 伽马能谱、土壤氡与分量化探联合探测方法在粤北百顺地区铀矿勘查中的应用[J]. 铀矿地质,2022,38(3):508−515.
WANG Jiayue,LANG Baiqiu,WANG Qinghao. Application of gamma spectrum,soil radon and partial extracting geochemical prospecting method in the uranium exploration of Baishun area,northern Guangdong Province,China[J]. Uranium Geology,2022,38(3):508−515.
|
[67] |
楚泽涵,高 杰,黄隆基,等. 地球物理测井方法与原理[M]. 北京:石油工业出版社,2007.
|
[68] |
李国栋. 测井在地浸砂岩型铀矿勘查中的应用研究[D]. 西安: 长安大学,2016.
LI Guodong. Logging on in-situ leaching of sandstone type uranium deposit exploration research[D]. Xi’an: Chang’an University,2016.
|
[69] |
陈 聪,喻 翔,陈 涛. 巴彦乌拉铀矿床氧化还原过渡带磁异常产生机理研究[J]. 地质论评,2017,63(S1):55−56.
CHEN Cong,YU Xiang,CHEN Tao. Study on the mechanism of magnetic Anomaly in the redox transitional zone of Bayan Ula uranium deposit[J]. Geological Review,2017,63(S1):55−56.
|
[70] |
CHEN T,SONG X. Are coal-hosted gallium-rich ores elastically detectable:a rock-physics modeling perspective[J]. Minerals. 2022,12(12):1619.
|
[71] |
龚 弦,马 源,何学志,等. 遥感技术在地质矿产勘查中的应用研究分析[J]. 中国非金属矿工业导刊,2022(6):69−73.
GONG Xian,MA Yuan,HE Xuezhi, et al. Application of remote sensing technology in geological and mineral exploration[J]. China Non-Metallic Minerals Industry,2022(6):69−73.
|
[72] |
李亚哲,黄文涛. 三维地震技术在鄂尔多斯盆地东北部煤田构造特征勘探中的应用研究[J]. 煤炭技术,2019,38(4):81−83.
LI Yazhe,HUANG Wentao. Application of 3d seismic technology to exploration of coalfield structural characteristics in northeastern ordos basin[J]. Coal Technology,2019,38(4):81−83.
|
[73] |
张金带. 我国砂岩型铀矿成矿理论的创新和发展[J]. 铀矿地质,2016,32(6):321−332. doi: 10.3969/j.issn.1000-0658.2016.06.001
ZHANG Jindai. Innovation and development of metallogenic theory for sandstone type uranium deposit in China[J]. Uranium Geology,2016,32(6):321−332. doi: 10.3969/j.issn.1000-0658.2016.06.001
|
[74] |
侯惠群,韩绍阳,柯 丹. 砂岩型铀矿若信息提取方法应用研究[J]. 地质通报,2015,34(7):1344−1349.
HOU Huiqun,HAN Shaoyang,KE Dan. Application study of methods and techniques for weak information extraction of sandstone-hosted uranium deposits[J]. Geological Bulletin of China,2015,34(7):1344−1349.
|
[75] |
张必敏,王学求,徐善法,等. 穿透性地球化学勘查技术在隐伏砂岩型铀矿调查中的应用研究[J]. 地球学报,2020,41(6):770−784.
ZHANG Bimin,WANG Xueqiu,XU Shanfa, et al. The research and application of deep-penetrating geochemical exploration technology in the survey of concealed candstone-type uranium deposits[J]. Acta Geoscientica Sinica,2020,41(6):770−784.
|
[76] |
曾建纲,聂逢君,封志兵,等. 二连盆地砂岩型铀矿找矿中的地球物理标识[J]. 金属矿山,2014(5):130−133.
ZENG Jiangang,NIE Fengjun,FENG Zhibing, et al. Geophysical indicators of Erlian basin sandstone-type uranium deposits[J]. Metal Mine,2014(5):130−133.
|
[77] |
黄文辉,唐修义. 中国煤中的铀、钍和放射性核素[J]. 中国煤田地质,2002,14(S1):55−63.
HUANG Wenhui,TANG Xiuyi. Uranium,thorium and other radionuclides in coal of China[J]. Coal Geology of China,2002,14(S1):55−63.
|
[78] |
王文峰,王文龙,刘双双,等. 煤中铀的赋存分布及其在利用过程中的迁移特征[J]. 煤田地质与勘探,2021,49(1):65−80.
WANG Wenfeng,WANG Wenlong,LIU Shuangshuang, et al. Distribution and occurrence of uranium in coal and its migration behavior during the coal utilization[J]. Coal Geology & Exploration,2021,49(1):65−80.
|
[79] |
周贤青,秦 勇,陆 鹿. 中国煤型铀地质-地球化学研究进展[J]. 煤田地质与勘探,2019,47(4):45−53.
ZHOU Xianqing,QIN Yong,LU Lu. Advances on geological-geochemical research of coal-type uranium in China[J]. Coal Geology & Exploration,2019,47(4):45−53.
|
[80] |
DAI S,SEREDIN V V,WARD C R, et al. Enrichment of U-Se-Mo-Re-V in coals preserved within marine carbonate successions:geochemical and mineralogical data from the Late Permian Guiding Coalfield,Guizhou,China[J]. Mineralium Deposita,2014,50(2):159−186.
|
[81] |
代世峰,任德贻,孙玉壮,等. 鄂尔多斯盆地晚古生代煤中铀和钍的含量与逐级化学提取[J]. 煤炭学报,2004,29(S1):56−60.
DAI Shifeng,REN Deyi,SUN Yuzhuang, et al. Concentration and the sequential chemical extraction procedures of U and Th in the Paleozoic coals from the Ordos Basin[J]. Journal of China Coal Society,2004,29(S1):56−60.
|
[82] |
任德贻,赵峰华,代世峰,等. 煤的微量元素地球化学[M]. 北京:科学出版社,2006.
|
[83] |
孙玉壮,赵存良,李彦恒,等. 煤中某些伴生金属元素的综合利用指标探讨[J]. 煤炭学报,2014,39(4):744−748.
SUN Yuzhuang,ZHAO Cunliang,LI Yanheng, et al. Minimum mining grade of the selected trace elements in Chinese coal[J]. Journal of China Coal Society,2014,39(4):744−748.
|
[84] |
李子颖,秦明宽,范洪海,等. 我国铀矿地质科技近十年的主要进展[J]. 矿物岩石地球化学通报,2021,40(4):845−857,1001.
LI Ziying,QIN Mingkuan,FAN Honghai, et al. Main progresses of uranium geology and exploration techniques for the past decade in China[J]. Bulletin of Mineralogy,Petrology and Geochemistry,2021,40(4):845−857,1001.
|
[85] |
ZHAO L,WARD C R,FRENCH D ,et al. Origin of a kaolinite-NH 4-illite-pyrophyllite-chlorite assemblage in a marine-influenced anthracite and associated strata from the Jincheng Coalfield,Qinshui Basin,Northern China[J]. International Journal of Coal Geology,2018,185:61−78.
|
[86] |
SUN Y,ZHAO C,ZHANG J,et al. Concentrations of valuable elements of the coals from the Pingshuo Mining District,Ningwu Coalfield,northern China[J]. Energy Exploration &Exploitation. 2013,31(5):727−744.
|
[87] |
SUN Y,ZHAO C,LI Y, et al. Li distribution and mode of occurrences in Li-bearing coal seam# 6 from the Guanbanwusu Mine,Inner Mongolia,Northern China[J]. Energy Exploration & Exploitation,2012,30(1):109−130.
|
[88] |
QIN S,LU Q,LI Y, et al. Relationships between trace elements and organic matter in coals[J]. Journal of Geochemical Exploration,2018,188:101−110. doi: 10.1016/j.gexplo.2018.01.015
|
[89] |
ZHAO L,DAI S,NECHAEV V P,et al. Enrichment origin of critical elements (Li and rare earth elements) and a Mo-U-Se-Re assemblage in Pennsylvanian anthracite from the Jincheng Coalfield,southeastern Qinshui Basin,northern China[J]. Ore Geology Reviews. 2019,115:103184.
|
[90] |
DAI S,FINKELMAN R B,FRENCH D, et al. Modes of occurrence of elements in coal:Acritical evaluation[J]. Earth-Science Reviews,2021,2022:103815.
|
[91] |
SUN Y Z ,ZHAO C L ,Li Y H ,et al. Li distribution and mode of occurrences in Li-bearing Coal Seam 9 from Pingshuo Mining district,Ningwu Coalfield,northern China[J]. Acta Geologica Sinica(English Edition),2013,87(4):1097−1108.
|
[92] |
秦身钧,徐 飞,崔 莉,等. 煤型战略关键微量元素的地球化学特征及资源化利用[J]. 煤炭科学技术,2022,50(3):1−38.
QIN Shenjun,XU Fei,CUI Li, et al. Geochemistry characteristics and resource utilization of strategically critical trace elements from coal-related resources[J]. Coal Science and Technology,2022,50(3):1−38.
|
[93] |
SUN Y Z,LI Y H,ZHAO C L, et al. Concentrations of lithium in Chinese coal[J]. Energy Exploration and Expoitation,2010,28(2):97−104. doi: 10.1260/0144-5987.28.2.97
|
[94] |
DAI S,JIANG Y,WARD C R, et al. Mineralogical and geochemical compositions of the coal in the Guanbanwusu Mine,Inner Mongolia,China:further evidence for the existence of an Al(Ga and REE)ore deposit in the Jungar Coalfield[J]. International Journal of Coal Geology,2012,98:10−40. doi: 10.1016/j.coal.2012.03.003
|
[95] |
张 勇,秦身钧,杨晶晶,等. 煤中镓的地球化学研究进展[J]. 地质科技情报,2014,33(5):166−169,175.
ZHANG Yong,QIN Shenjun,YANG Jingjing, et al. Progress in geochemistry of gallium in coal[J]. Geological Science and Technology Information,2014,33(5):166−169,175.
|
[96] |
张复新,王立社. 内蒙古准格尔黑岱沟超大型煤型镓矿床的形成与物质来源[J]. 中国地质,2009,36(2):417−423. doi: 10.3969/j.issn.1000-3657.2009.02.015
ZHANG Fuxin,WANG Lishe. The formation and material sources of the superlarge Hada Gol Ga-bearing coal deposit in Jungar Banner,Inner Mongolia[J]. Geology in China,2009,36(2):417−423. doi: 10.3969/j.issn.1000-3657.2009.02.015
|
[97] |
罗培麒,付 勇,唐 波,等. 中国镓矿分布规律、成矿机制及找矿方向[J]. 地球学报,2023,44(4):599−624.
LUO Peiqi,FU Yong,TANG Bo, et al. Distribution,metallogenic mechanism and prospecting direction of gallium deposits in China[J]. Acta Geoscientica Sinica,2023,44(4):599−624.
|
[98] |
王文峰,秦 勇,刘新花,等. 内蒙古准格尔煤田煤中镓的分布赋存与富集成因[J]. 中国科学:地球科学,2011,41(2):181−196.
WANG Wenfeng,QIN Yong,LIU Xinhua, et al. Distribution,occurrence and enrichment causes of gallium in coals from the Jungar Coalfield,Inner Mongolia[J]. Scientia Sinica (Terrae),2011,41(2):181−196.
|
[99] |
庄汉平,刘金钟,傅家谟,等. 临沧超大型锗矿床有机质与锗矿化的地球化学特征[J]. 地球化学,1997,26(4):44−52.
ZHUANG Hanping,LIU Jinzhong,FU Jiamo, et al. Some characteristics of organic matter and mineralization of Lincang super-large germanium deposit in Yunnan province,China[J]. Geochimica,1997,26(4):44−52.
|
[100] |
任德贻. 煤的微量元素地球化学[M]. 北京:科学出版社,2006.
|
[101] |
DAI S,WANG P,WADR C R, et al. Elemental and mineralogical anomalies in the coal-hosted Ge ore deposit of Lincang,Yunnan,southwestern China:key role of N2-CO2-mixed hydrothermal solutions[J]. International Journal of Coal Geology,2015,152:19−46. doi: 10.1016/j.coal.2014.11.006
|
[102] |
王婷灏,黄文辉,闫德宇,等. 中国大型煤−锗矿床成矿模式研究进展:以云南临沧和内蒙古乌兰图嘎煤−锗矿床为例[J]. 地学前缘,2016,23(3):113−123.
WANG Tinghao,HUANG Wenhui,YAN Deyu, et al. Progress of research on mineralization mode of large coal-Ge deposits in China:coal-Ge deposit in Wulantuga of lnner Mongolia and Lincang of Yunan[J]. Earth Science Frontiers,2016,23(3):113−123.
|
[103] |
黄文辉,赵继尧. 中国煤中的锗和镓[J]. 中国煤田地质,2002,14(S1):65−70.
HUANG Wenhiu,ZHAO Jiyao. Germanium and Gallium in coal of China[J]. Coal Geology of China,2002,14(S1):65−70.
|
[104] |
王兰明. 内蒙古锡林郭勒盟乌兰图嘎锗矿地质特征及勘查工作简介[J]. 内蒙古地质,1999(3):16−20,15.
WANG Lanming. Introduction of the geological feature and explorating of Wulantuga germanium deposit in Xilinguole League,Inner Mongolia[J]. Geology of Inner Mongolia,1999(3):16−20,15.
|
[105] |
雒洋冰. 川东川南晚二叠世煤及凝灰岩中微量元素地球化学研究[D]. 北京:中国矿业大学(北京),2014.
LUO Yangbing. The study of trace elements geochemistry in Late Permian coal and tuff samples from east and south Sichuan Province,China[D]. Beijing :China University of Mining & Technology-Beijing,2014.
|
[106] |
SEREDIN V V,FINKELMAN R B. Metalliferous coals:a review of the main genetic and geochemical types[J]. International Journal of Coal Geology,2008,76:253−289. doi: 10.1016/j.coal.2008.07.016
|
[107] |
DAI S,FINKELMAN R B. Coal as a promising source of critical elements:Progress and future prospects[J]. International Journal of Coal Geology,2018,186:155−164. doi: 10.1016/j.coal.2017.06.005
|
[108] |
DAI S,YAN X,WARD C R, et al. Valuable elements in Chinese coals:a review[J]. International Geology Review,2018,60:590−620. doi: 10.1080/00206814.2016.1197802
|
[109] |
BOHOR B F,TRIPLEHORN D M. Tonsteins:altered volcanic-ash layers in coal-bearing sequences[M]. Geological Society of America,1993,285:44.
|
[110] |
DAI S,WARD C R,GRAHAM I T, et al. Altered volcanic ashes in coal and coal-bearing sequences:A review of their nature and significance[J]. Earth Science Reviews,2017,175:44−74. doi: 10.1016/j.earscirev.2017.10.005
|