TANG Fuquan,YANG Qian. Progress and prospects of multi-source remote sensing monitoring technology for coal mining subsidence in mining areas of the western Loess Plateau[J]. Coal Science and Technology,2023,51(12):9−26
. DOI: 10.12438/cst.2023-1113Citation: |
TANG Fuquan,YANG Qian. Progress and prospects of multi-source remote sensing monitoring technology for coal mining subsidence in mining areas of the western Loess Plateau[J]. Coal Science and Technology,2023,51(12):9−26 . DOI: 10.12438/cst.2023-1113 |
The western loess-covered area is an important coal production base in China, with complex geomorphology and geological mining conditions, huge thickness of loess layer, mining subsidence with special characteristics different from other mining areas, large surface subsidence rate, small starting distance, more serious discontinuous damage such as mining cracks, and more complicated and changeable characteristics of the shape of the surface subsidence basin and the distribution of subsidence deformation. Under the current technical conditions, it is still difficult to carry out efficient monitoring and quantitative evaluation of surface subsidence. In recent years, multi-source remote sensing technologies such as Interferometric Synthetic Aperture Radar(InSAR), Unmanned Aerial Vehicle photogrammetry(UAV photogrammetry), and Light Detection and Ranging(LiDAR) have been developing rapidly, and with its features of non-contact observation, wide coverage, and high spatial and temporal resolution, it is able to realize the continuity, dynamics and comprehensive monitoring of surface subsidence. Through the fusion of multi-source observation data, it can provide a new technological way for the efficient monitoring of the mining subsidence in the western mining area. This paper summarizes the progress of the application of multi-source remote sensing technology in mining subsidence monitoring. The practical effects of lnSAR, UAV photogrammetry, and LiDAR for subsidence monitoring in mining areas on the Loess Plateau are explored through field experiments, and it is found that under the conditions of complex geomorphology, undulating topography, and vegetation cover, as well as large-gradient deformation of the ground surface, the lnSAR interferometric loss of correlation, atmospheric delays and other kinds of errors are too large. The 3D model constructed from UAV photogrammetry is affected by vegetation and terrain, resulting in insufficient elevation accuracy for the ground model. UAV laser scanning is affected by the combined effects of terrain slope, point cloud density, and horizontal movement of surface points leading to significant DEM modeling errors. As a result, multi-source remote sensing techniques under the current conditions all have their own advantages, limitations and technical bottlenecks. On this basis, the algorithmic process of ground point cloud extraction and surface 3D deformation information acquisition in the loess gully area is proposed; the technical path to realize accurate and efficient monitoring of mine subsidence 3D displacement based on the fusion of multi-source remote sensing data is pointed out; and the prospect of the application of constructing an intelligent system of multi-source remote sensing monitoring of mine subsidence is envisioned.
[1] |
钱鸣高. 煤炭的科学开采[J]. 煤炭学报,2010,35(4):529−534.
QIAN Minggao. On sustainable coal mining in China[J]. Joumal of China Coal Society,2010,35(4):529−534.
|
[2] |
谢和平,王金华,王国法,等. 煤炭革命新理念与煤炭科技发展构想[J]. 煤炭学报,2018,43(5):1187−1197.
XIE Heping,WANG Jinhua,WANG Guofa,et a1. New ideas of coal revolution and layout of coal science and technology development[J]. Journal of China Coal Society,2018,43(5):1187−1197.
|
[3] |
袁 亮. 我国深部煤与瓦斯共采战略思考[J]. 煤炭学报,2016,4l(1):1−6.
Yuan liang. Strategic thinking of simultaneous exploitation of coal and gas in deep mining[J]. Journal of China Coal Society,2016,4l(1):1−6.
|
[4] |
王双明,杜华栋,王生全. 神木北部采煤塌陷区土壤与植被损害过程及机理分析[J]. 煤炭学报,2017,42(1):17−26.
WANG Shuangming,DU Huadong,WANG Shengquan. Analysis of damage process and mechanism for plant community and soil properties at northern Shenmu subsidence mining area[J]. Journal of China Coal Society,2017,42(1):17−26.
|
[5] |
彭苏萍,毕银丽. 黄河流域煤矿区生态环境修复关键技术与战略思考[J]. 煤炭学报,2020,45(4):1211−1221.
PENG Suping,BI Yinli. Strategic consideration and core technology about environmental ecological restoration in coal mine a1. eas in the Yellow River basin of China[J]. Journal of China Coal Society,2020,45(4):1211−1221.
|
[6] |
汪云甲. 矿区生态扰动监测研究进展与展望[J]. 测绘学报,2017,46(10):1705−1716.
WANG Yunjia. Research progress and prospect on ecological disturbance monitoring in mining area[J]. Acta Geodaetica et Cartographica Sinica,2017,46(10):1705−1716.
|
[7] |
TANG J,SUI L,MA T, et al. GEE–based ecological environment variation analysis under human projects in typical china loess plateau region[J]. Applied Sciences,2023,13(8):4663. doi: 10.3390/app13084663
|
[8] |
郭文兵,黄成飞,陈俊杰. 厚湿陷黄土层下综放开采动态地表移动特征[J]. 煤炭学报,2010,35(S1):38−43.
GUO Wenbing,HUANG Chengfei,CHEN Junjie. Dynamic surface movement characteristics of integrated mining under thick wet-sagged loess layer[J]. Journal of China Coal Society,2010,35(S1):38−43.
|
[9] |
余学义,李邦帮,李瑞斌,等. 西部巨厚湿陷性黄土层开采损害程度分析[J]. 中国矿业大学学报,2008,37(1):43−47.
YU Xueyi,LI Banggang,LI Ruibin, et al. Analysis of mining damage in huge thick collapsible loess of western China[J]. Journal of China University of Mining and Technology,2008,37(1):43−47.
|
[10] |
刘 辉,邓喀中,雷少刚,等. 采动地裂缝动态发育规律及治理标准探讨[J]. 采矿与安全工程学报,2017,34(5):884−890.
LIU Hui,DANG Kazhong,LEI Shaogang, et al. Dynamic developing law and governance standard of ground fissures caused by underground mining[J]. Journal of Mining and Safety Engineering,2017,34(5):884−890.
|
[11] |
TANG J,SUI L. Geodetector-Based Livability Analysis of potential resettlement locations for villages in coal mining areas on the loess plateau of China[J]. Sustainability,2022,14(14):8365. doi: 10.3390/su14148365
|
[12] |
许国胜,李德海,侯得峰,等. 厚松散层下开采地表动态移动变形规律实测及预测研究[J]. 岩土力学,2016,37(7):2056−2062.
XU Guosheng,LI Dehai,HOU Defeng, et al. Measurement and prediction of the transientsurface movement and deformation induced by mining under thick alluvium[J]. Rock and Soil Mechanics,2016,37(7):2056−2062.
|
[13] |
陈俊杰,邹友峰,郭文兵. 厚松散层下下沉系数与采动程度关系研究[J]. 采矿与安全工程学报,2012,29(2):250−254.
CHEN Junjie,ZOU Youfeng,GUO Wenbing. Study on the relationship between subsidence coefficient and mining degree under a thick alluvium stratum[J]. Journal of Mining and Safety Engineering,2012,29(2):250−254.
|
[14] |
GABRIEL A K,GOLDSTEIN R M,ZEBKER H A. Mapping small elevation changes over large areas:Differential radar interferometry[J]. Journal of Geophysical Research,1989,94(B7):9183. doi: 10.1029/JB094iB07p09183
|
[15] |
ROSEN P A,HENSLEY S,JOUGHIN I R, et al. Synthetic Aperture Radar Interferometry[J]. Proceedings of the IEEE,2000,88(3):333−382. doi: 10.1109/5.838084
|
[16] |
MASSONNET D,ROSSI M,Carmona-MORENO C, et al. The displacement field of the Landers earthquake mapped by Radar interferometry[J]. Nature,1993,364:138−142. doi: 10.1038/364138a0
|
[17] |
CARNEC C,MASSONNET D,KING C. Two examples of the use of SAR interferometry on displacement fields of small spatial extent[J]. Geophysical Research Letters,1996,23(24):3579−3582. doi: 10.1029/96GL03042
|
[18] |
邓喀中,姚 宁,卢 正,等. D–InSAR监测开采沉陷的实验研究[J]. 金属矿山,2009(12):25−27,120.
DENG Kazhong,YAO Ning,LU Zheng, et al. Experimental research on monitoring mining subsidence by D–InSAR technique[J]. Metal Mine,2009(12):25−27,120.
|
[19] |
FERRETTI A,PRATI C,ROCCA F. Permanent scatterers in SAR interferometry[C]//IEEE 1999 International Geoscience and Remote SENSING Symposium. IGARSS'99(Cat. No. 99CH36293). IEEE,1999,3:1528–1530.
|
[20] |
FERRETTI A,PRATI C,ROCCA F. Permanent scatterers in SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing,2001,39(1):8−20. doi: 10.1109/36.898661
|
[21] |
BERARDINO P,FORNARO G,LANARI R, et al. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing,2002,40(11):2375−2383. doi: 10.1109/TGRS.2002.803792
|
[22] |
FERRETTI A,FUMAGALLI A,NOVALI F, et al. A New Algorithm for Processing Interferometric Data-Stacks:SqueeSAR[J]. IEEE Transactions on Geoscience and Remote Sensing,2011,49:3460−3470. doi: 10.1109/TGRS.2011.2124465
|
[23] |
FERRETTI A,FUMAGALLI A,NOVALI F,et al. DEM reconstruction with SqueeSAR[C]//2012 Tyrrhenian workshop on advances in radar and remote Sensing. Naples(IT):Tee-Rieveno Euro – TRE SRL,Mino,Iy,2012:198–201.
|
[24] |
胡 爽,吴文豪,龙四春,等. 分布式目标在红庆河煤矿形变监测中的应用[J]. 大地测量与地球动力学,2019,39(12):1261−1264.
HU Shuang,WU Wenhao,LONG Sichun, et al. Application of distributed scatterer in deformation monitoring of hongqinghe Coal Mine[J]. Journal of Geodesy and Geodynamics,2019,39(12):1261−1264.
|
[25] |
胡 爽. 利用哨兵卫星SAR影像监测红庆河煤矿地表形变[D]. 湘潭: 湖南科技大学,2019.
HU Shuang. Monitoring the surface deformation of Hongqinghe Coal Mine with sentinel satellite SAR Image[D]. Xiangtan: Hunan University of Science and Technology,2019.
|
[26] |
李 毅. 融合分布式目标的矿区长时序InSAR地表形变监测[D]. 徐州: 中国矿业大学,2019.
LI Yi. Long time-series InSAR surface deformation monitoring with distributed scatterers in mining area[D]. Xuzhou: China University of Mining and Technology,2019.
|
[27] |
鹿 璐. 面向矿区地表时序沉降监测的DS–InSAR方法研究[D]. 徐州: 中国矿业大学,2020.
LU Lu. Study on DS–InSAR method for monitoring time-series surface deformation in mining area[D]. Xuzhou: China University of Mining and Technology,2020.
|
[28] |
刘友奉. 基于DS–InSAR的充填开采区地表沉降监测方法研究[D]. 徐州: 中国矿业大学,2021.
LIU Youfeng. Study on monitoring method of surface subsidence in filling mining area based on DS–InSAR[D]. Xuzhou: China University of Mining and Technology,2021.
|
[29] |
祝传广,张继贤,邓喀中,等. 基于改进MT–InSAR的日兰高铁巨野煤田段沉降监测[J]. 煤炭学报,2022,47(3):1031−1042.
ZHU Chuanguang,ZHANG Jixian,DENG Kazhong, et al. Monitoring and analysis of subsidence along RiLan high-speed railway at Juye coalfield based on the improved MT–InSAR[J]. Journal of China Coal Society,2022,47(3):1031−1042.
|
[30] |
毛文飞. 基于低频SAR分谱干涉和偏移估计的InSAR电离层误差校正模型与方法[D]. 成都: 西南交通大学,2022.
MAO Wenfei. InSAR ionospheric error correction model and method based on low-frequency SAR split-spectrum interferometry and offset estimation[D]. Chengdu: Southwest Jiaotong University,2022.
|
[31] |
蒋 弥,丁晓利,李志伟,等. 用L波段和C波段SAR数据研究汶川地震的同震形变[J]. 大地测量与地球动力学,2009,29(1):21−26.
JIANG Mi,DING Xiaoli,LI Zhiwei, et al. Study on coseismic deformation of wenchuan earthquake by use of Land C wavebands of SAR data[J]. Journal of Geodesy and Geodynamics,2009,29(1):21−26.
|
[32] |
刘 斌,葛大庆. L波段ScanSAR模式在滑坡早期识别中的应用[J]. 大地测量与地球动力学,2020,40(10):1084−1087.
LIU Bin,GE Daqing. Application fo L–Band ScanSAR Mode in early identification of landslide[J]. Journal of Geodesy and Geodynamics,2020,40(10):1084−1087.
|
[33] |
LIANG C,AGRAM P,SIMONS M, et al. Ionospheric correction of InSAR time series analysis of c-band sentinel-1 tops data[J]. IEEE Transactions on Geoscience and Remote Sensing,2019,57(9):6755−6773. doi: 10.1109/TGRS.2019.2908494
|
[34] |
MEYER F J,CHOTOO K,CHOTOO S D, et al. The influence of equatorial scintillation on L–Band SAR image quality and phase[J]. IEEE Transactions on Geoscience and Remote Sensing,2016,54(2):869−880. doi: 10.1109/TGRS.2015.2468573
|
[35] |
JI Y,ZHANG Y,DONG Z, et al. Impacts of ionospheric irregularities on L–Band geosynchronous synthetic aperture radar[J]. IEEE Transactions on Geoscience and Remote Sensing,2020,58(6):3941−3954. doi: 10.1109/TGRS.2019.2959702
|
[36] |
汤伏全,董龙凯,王宗良,等. 基于沉陷对称特征的近水平煤层开采InSAR三维位移反演模型[J]. 煤炭学报,2019,44(1):210−220.
TANG Fuquan, DONG Longkai, WANG Zongliang, et al. A 3–D inversion model for InSAR detected displacements based on ground subsidence symmetry induced by horizontal coal mining[J]. Journal of China Coal Society,2019,44(1):210−220.
|
[37] |
TANG F,HUANG J,DONG L, et al. SIP–Based inversion model of mining-induced 3D deformation[J]. Photogrammetric Engineering & Remote Sensing,2021,87(1):21−31.
|
[38] |
DAWEI Z,LIZHUANG Q,DEMIN Z, et al. Unmanned aerial vehicle(UAV) photogrammetry technology for dynamic mining subsidence monitoring and parameter inversion:a case study in China[J]. IEEE Access,2020,8:16372−16386. doi: 10.1109/ACCESS.2020.2967410
|
[39] |
KRŠáK B,BLIŠŤAN P,PAULIKOVá A, et al. Use of low-cost UAV photogrammetry to analyze the accuracy of a digital elevation model in a case study[J]. Measurement,2016,91:276−287. doi: 10.1016/j.measurement.2016.05.028
|
[40] |
Ignjatović STUPAR D,ROŠER J,VULIĆ M. Investigation of unmanned aerial vehicles-based photogrammetry for large mine subsidence monitoring[J]. Minerals,2020,10(2):196. doi: 10.3390/min10020196
|
[41] |
高冠杰,侯恩科,谢晓深,等. 基于四旋翼无人机的宁夏羊场湾煤矿采煤沉陷量监测[J]. 地质通报,2018,37(12):2264−2269.
GAO Guanjie,HOU Enke,XIE Xiaoshen, et al. The monitoring of ground surface subsidence related to coal seams mining in Yangchangwan coal mine by means of unmanned aerial vehicle with quad-rotors[J]. Geological Bulletin of China,2018,37(12):2264−2269.
|
[42] |
张 曦. 基于无人机摄影测量技术的矿区沉陷监测方法研究[D]. 邯郸: 河北工程大学,2019.
ZHANG Xi. Study on the method of subsidence monitoring in mining areas based on UAV photogrammetry technology[D]. Handan: Hebei University of Engineering,2019.
|
[43] |
任本伟. 基于多源监测数据的矿区地表沉陷研究[D]. 邯郸: 河北工程大学,2020.
REN Benwei. Study on surface subsidence of mining area based on multi-source monitoring data[D]. Handan: Hebei University of Engineering,2020.
|
[44] |
董 祥. 垂直起降固定翼无人机摄影测量开采沉陷监测应用[D]. 徐州: 中国矿业大学,2021.
DONG Xiang. Vertical take-off and landing fixed-wing UAV photogrammetry mining subsidence monitoring application[D]. Xuzhou: China University of Mining and Technology,2021.
|
[45] |
杨绪霆,姚顽强,郑俊良,等. 无人机地形跟随在矿区沉陷监测中的应用[J]. 测绘通报,2021(5):111−115.
YANG Xuting,YAO Wanqiang,ZHENG Junliang, et al. UAV terrain following technology application in the mining subsidence monitoring research[J]. Bulletin of Surveying and Mapping,2021(5):111−115.
|
[46] |
廉旭刚,王 站,刘晓宇,等. 免像控无人机摄影测量开采沉陷监测方法研究[J]. 金属矿山,2021(12):169−176.
LIAN Xugang,WANG Zhan,LIU Xiaoyu et al. Study on mining subsidence monitoring method based on image free control UAV photogrammetry[J]. Metal Mine,2021(12):169−176.
|
[47] |
马晨阳. 高时空分辨率地表移动变形动态规律研究[D]. 徐州: 中国矿业大学,2022.
MA Chenyang. Study on dynamic law of surface movement and deformation with high temporal and spatial resolution[D]. Xuzhou: China University of Mining and Technology,2022.
|
[48] |
张 鹏. 黄土风沙区浅埋煤层开采地裂缝发育致土壤损伤规律研究[D]. 徐州:中国矿业大学,2022.
ZHANG Peng. Study on soil damage caused by crack development in shallow coal mining in loess sand-blown region[D]. Xuzhou:China University of Mining and Technology,2022.
|
[49] |
魏长婧,汪云甲,王 坚,等. 无人机影像提取矿区地裂缝信息技术研究[J]. 金属矿山,2012(10):90−92,96. doi: 10.3969/j.issn.1001-1250.2012.10.024
WEI Changjing,WANG Yunjia,WANG Jian, et al. The technical research of extracting ground fissure information in mining area with the UAV image[J]. Metal Mine,2012(10):90−92,96. doi: 10.3969/j.issn.1001-1250.2012.10.024
|
[50] |
侯恩科,首召贵,徐友宁,等. 无人机遥感技术在采煤地面塌陷监测中的应用[J]. 煤田地质与勘探,2017,45(6):102−110.
HOU Enke,SHOU Zhaogui,XU Youning, et al. Application of UAV remote sensing technology in monitoring of coal mining-induced subsidence[J]. Coal Geology & Exploration,2017,45(6):102−110.
|
[51] |
侯恩科,张 杰,谢晓深,等. 无人机遥感与卫星遥感在采煤地表裂缝识别中的对比[J]. 地质通报,2019,38(2/3):443−448.
HOU Enke,ZHANG Jie,XIE Xiaoshen, et al. Contrast application of unmanned aerial vehicle remote sensing and satellite remote sensing technology relating to ground surface cracks recognition in coal mining area[J]. Geological Bulletin of China,2019,38(2/3):443−448.
|
[52] |
杨奇让,胡振琪,韩佳政,等. 煤矿区无人机影像采动地裂缝提取方法研究[J]. 煤炭科学技术,2023,51(6):187−196. doi: 10.13199/j.cnki.cst.2021-1204
YANG Qirang,HU Zhenqi,HAN Jiazheng, et al. Research on extraction method of ground fissures caused by mining through UAV image in coal mine areas[J]. Coal Science and Technology,2023,51(6):187−196. doi: 10.13199/j.cnki.cst.2021-1204
|
[53] |
李林宽. 基于无人机影像的煤矿区采动裂缝提取[D]. 西安: 西安科技大学,2021.
LI Linkuan. Extraction of mining cracks in coal mine area based on UAV images[D]. Xi’an: Xi’an University of Science and Technology,2021.
|
[54] |
韦博文. 基于改进的MF–FDOG算法和无人机影像提取黄土地区地裂缝[D]. 成都: 西南交通大学,2018.
WEI Bowen. Extraction ground fissures in loess ladform area using modified MF–FDOG algorithm and UAV images[D]. Chengdu: Southwest Jiaotong University,2018.
|
[55] |
郝 明,林惠晶,高彦彦. 基于改进主动轮廓模型的无人机影像矿区地裂缝提取[J]. 地球信息科学学报,2022,24(12):2448−2457.
HAO Ming,LIN Huijing,GAO Yanyan. Ground fissure extraction method based on improved active contour model for UAV images in mining areas[J]. Journal of Geo-information Science,2022,24(12):2448−2457.
|
[56] |
耿诗画. 基于多源数据的采空区地表裂缝活动监测[D]. 绵阳: 西南科技大学,2022.
GENG Shihua. Monitoring of surface fracture activity in goaf based on multi-source Data[D]. Mianyang: Southwest University of Science and Technology,2022.
|
[57] |
杨奇让. 基于无人机的西部黄土沟壑区采动地裂缝提取方法研究[D]. 徐州: 中国矿业大学,2022.
YANG Qirang. Research on extraction method of mining ground fissures based on unmanned aerial vehicle in loess gully area of western China[D]. Xuzhou: China University of Mining and Technology,2022.
|
[58] |
汤伏全,李林宽,李小涛,等. 基于无人机影像的采动地表裂缝特征研究[J]. 煤炭科学技术,2020,48(10):130−136.
TANG Fuquan,LI Linkuan,LI Xiaotao, et al. Research on characteristics of mining-induced surface cracks based on UAV images[J]. Coal Science and Technology,2020,48(10):130−136.
|
[59] |
隋立春,张熠斌,张 硕,等. 基于渐进三角网的机载LiDAR点云数据滤波[J]. 武汉大学学报(信息科学版),2011,36(10):1159−1163.
SUI Lichun,ZHANG Yibin,ZHANG Shuo et al. Filtering of airborne LiDAR point cloud data based on progressive TIN[J]. Geomatics and Information Science of Wuhan University,2011,36(10):1159−1163.
|
[60] |
周大伟,安士凯,吴 侃,等. 矿山开采损害SAR/UAV融合监测关键技术及应用[J]. 煤炭科学技术,2022,50(10):121−134.
ZHOU Dawei,AN Shikai,WU Kan, et al. Key technology and application of InSAR /UAV fusion monitoring for coalmining damages[J]. Coal Science and Technology,2022,50(10):121−134.
|
[61] |
COOK K L. An evaluation of the effectiveness of low-cost UAVs and structure from motion for geomorphic change detection[J]. Geomorphology,2017,278:195−208. doi: 10.1016/j.geomorph.2016.11.009
|
[62] |
汤伏全,芦家欣,韦书平,等. 基于无人机LiDAR的榆神矿区采煤沉陷建模方法改进[J]. 煤炭学报,2020,45(7):2655−2666.
TANG Fuquan,LU Jiaxin,WEI Shuping,et a1. Improvement of mining subsidence modeling method based on UAV LiDAR in Yushen mining area[J]. Journal of China Coal Society,2020,45(7):2655−2666.
|
[63] |
何柯璐,汤伏全,韦书平,等. 机载激光点云构建西部矿区开采沉陷模型研究[J]. 测绘科学,2021,46(2):130−138.
HE Kelu,TANG Fuquan,WEI Shuping, et al. Airborne laser point cloud modeling of mining subsidence in western mining areas[J]. Science of Surveying and Mapping,2021,46(2):130−138.
|
[64] |
ZHENG J,YAO W,LIN X, et al. An accurate digital subsidence model for deformation detection of coal mining areas using a UAV–Based LiDAR[J]. Remote Sensing,2022,14(2):421. doi: 10.3390/rs14020421
|
[65] |
KHAN S D,HUANG Z,KARACAY A. Study of ground subsidence in northwest Harris county using GPS,LiDAR,and InSAR techniques[J]. Natural Hazards,2014,73(3):1143−1173. doi: 10.1007/s11069-014-1067-x
|
[66] |
de KONING M,HAASNOOT J K,van BUUREN R R, et al. Determination of amount of land subsidence based on INSAR and LiDAR monitoring for a dike strengthening project[J]. Proceedings of the International Association of Hydrological Sciences,2020,382:57−62. doi: 10.5194/piahs-382-57-2020
|
[67] |
HE Y,XU G,KAUFMANN H,et al. Integration of InSAR and LiDAR Technologies for a Detailed Urban Subsidence and Hazard Assessment in Shenzhen,China[J]. Remote Sensing,2021,13(12):2366.
|
[68] |
BERNARD T G,LAGUE D,STEER P. Beyond 2D landslide inventories and their rollover:synoptic 3D inventories and volume from repeat lidar data[J]. Earth Surface Dynamics,2021,9(4):1013−1044. doi: 10.5194/esurf-9-1013-2021
|
[69] |
HU L,Navarro-HERNáNDEZ M I,LIU X, et al. Analysis of regional large-gradient land subsidence in the Alto Guadalentín Basin(Spain) using open-access aerial LiDAR datasets[J]. Remote Sensing of Environment,2022,280:113218. doi: 10.1016/j.rse.2022.113218
|
[70] |
LUO L,MA W,ZHANG Z, et al. Freeze/thaw-induced deformation monitoring and assessment of the slope in permafrost based on terrestrial laser scanner and GNSS[J]. Remote Sensing,2017,9(3):198. doi: 10.3390/rs9030198
|
[71] |
YIN C,YIN C,LI H, et al. Application of the terrestrial laser scanning in slope deformation monitoring:taking a highway slope as an example[J]. Applied Sciences,2020,10(8):2808. doi: 10.3390/app10082808
|
[72] |
JONES L,HOBBS P. The application of terrestrial LiDAR for geohazard mapping,monitoring and modelling in the british geological survey[J]. Remote Sensing,2021,13(3):395. doi: 10.3390/rs13030395
|
[73] |
KERMARREC G,ZHONGLONG Yang,Daniel Czerwonka-Schröder. Classification of terrestrial laser scanner point clouds:a comparison of methods for landslide monitoring from mathematical surface approximation[J]. Remote Sensing,2022,14(20):5099−5099. doi: 10.3390/rs14205099
|
[74] |
李 秋,秦永智,李宏英. 激光三维扫描技术在矿区地表沉陷监测中的应用研究[J]. 煤炭工程,2006(4):97−99. doi: 10.3969/j.issn.1671-0959.2006.04.040
LI Qiu,QIN Yongzhi,LI Hongying. Research on the application of laser three-dimensional scanning technology in the monitoring of surface subsidence in mining areas[J]. Coal Engineering,2006(4):97−99. doi: 10.3969/j.issn.1671-0959.2006.04.040
|
[75] |
李 强,邓 辉,周 毅. 三维激光扫描在矿区地面沉陷变形监测中的应用[J]. 中国地质灾害与防治学报,2014,25(1):119−124.
LI Qiang,DENG Hui,ZHOU Yi. Application of 3D laser scanning to the ground subsidence deformation monitoring in mining area[J]. The Chinese Journal of Geological Hazard and Control,2014,25(1):119−124.
|
[76] |
孟万利,蔡来良,王姗姗,等. 基于TLS技术的矿区地表沉降快速自动获取研究[J]. 地理与地理信息科学,2017,33(3):36−41.
MENG Wanli,CAI Lailiang,WANG shanshan, et al. Study on rapid and automatic acquisition of surface subsidence in mining area based on TLS tschnology[J]. Geography and Geo-Infoemation Science,2017,33(3):36−41.
|
[77] |
何 荣,陆 广. 基于三维激光扫描的矿区地表倾斜值提取方法研究[J]. 煤炭科学技术,2020,48(11):199−205.
HE Rong,LU Guang. Study on extraction method of surface deformation tilt based on 3D laser scanning[J]. Coal Science and Technology,2020,48(11):199−205.
|
[78] |
SCHRODER W,MURTHA T,GOLDEN C,et al. UAV LiDAR survey for archaeological documentation in chiapas,Mexico[J]. Remote Sensing,2021,13(23):4731.
|
[79] |
SANKEY T,DONAGER J,McVay J, et al. UAV lidar and hyperspectral fusion for forest monitoring in the southwestern USA[J]. Remote Sensing of Environment,2017,195:30−43. doi: 10.1016/j.rse.2017.04.007
|
[80] |
Escobar VILLANUEVA J R,Iglesias MARTíNEZ L,Pérez MONTIEL J I. DEM generation from fixed-wing UAV imaging and LiDAR–derived ground control points for flood estimations[J]. Sensors,2019,19(14):3205.
|
[81] |
CURCIO A C,PERALTA G,ARANDA M,et al. Evaluating the performance of high spatial resolution UAV–photogrammetry and UAV–LiDAR for salt marshes:the cádiz bay study case[J]. Remote Sensing,2022,14(15):3582.
|
[82] |
LI B,HOU J,LI D, et al. Application of LiDAR UAV for high-resolution flood modelling[J]. Water Resources Management,2021,35(5):1433−1447. doi: 10.1007/s11269-021-02783-w
|
[83] |
DHARMADASA V,KINNARD C,BARAëR M. An accuracy assessment of snow depth measurements in agro-forested environments by UAV lidar[J]. Remote Sensing,2022,14(7):1649.
|
[84] |
CHIANG K W,TSAI G J,LI Y H, et al. Development of LiDAR–Based UAV system for environment reconstruction[J]. IEEE Geoscience and Remote Sensing Letters,2017,14:1790−1794.
|
[85] |
陈 琳,范湘涛,杜小平. 基于高程统计的机载LiDAR点云三角网渐进滤波方法[J]. 遥感信息,2014,29(3):19−23,43.
CHEN Lin,FAN Xiangtao,DU Xiaoping. A filtering method with adaptive TIN models for airborne LiDAR points based on elevation statistics[J]. Remote Sensing Information,2014,29(3):19−23,43.
|
[86] |
龚 亮,张永生,施群山,等. 基于高程统计方法的机载LiDAR点云数据滤波[J]. 测绘与空间地理信息,2012,35(2):42−45.
GONG Liang,ZHANG Yongsheng,SHI Qunshan, et al. A filtering method of airborne LiDAR point cloud data based on statistics of elevation distribution[J]. Geomatics and Spatial Information Technology,2012,35(2):42−45.
|
[87] |
隋立春,杨 耘. 基于car(p,q)模型和数学形态学理论的LiDAR点云数据滤波[J]. 测绘学报,2012,41(2):219−224.
SUI Lichun,YANG Yun. LiDAR point cloud data filtering based on car(p,q) model and mathematical morphology theory[J]. Acta Geodaetica et Cartographica Sinica,2012,41(2):219−224.
|
[88] |
何培培,万幼川,黄桂平,等. 城区LiDAR点云自适应坡度的滤波算法[J]. 遥感信息,2017,32(5):62−68.
HE Peipei,WAN Youchuan,HUANG Guiping, et al. Adaptive slope filtering algorithm for LiDAR point clouds in urban areas[J]. Remote Sensing Information,2017,32(5):62−68.
|
[89] |
赵明君,刘 超,高 翔,等. 基于多尺度网格的点云自适应坡度滤波算法[J]. 合肥工业大学学报(自然科学版),2021,44(2):266−272. doi: 10.3969/j.issn.1003-5060.2021.02.021
ZHAO Mingjun,LIU Chao,GAO Xiang, et al. Adaptive slope filtering algorithm for point cloud based on multi-scale grid[J]. Journal of Hefei University of Technology(Natural Science),2021,44(2):266−272. doi: 10.3969/j.issn.1003-5060.2021.02.021
|
[90] |
詹总谦,胡孟琦,满益云. 多尺度区域生长点云滤波地表拟合法[J]. 测绘学报,2020,49(6):757−766.
ZHAN Zongqian,HU Mengqi,MAN Yiyun. Multi-scale region growing point cloud filtering method based on surface fitting[J]. Acta Geodaetica et Cartographica Sinica,2020,49(6):757−766.
|
[91] |
尚大帅,黎恒明,赵 羲. 一种基于曲面约束的点云数据滤波方法[J]. 雷达科学与技术,2013,11(4):413−418.
SHANG Dashuai,LI Hengming,ZHAO Xi. A filtering method based on surface constraint for point cloud data[J]. Radar Science and Technology,2013,11(4):413−418.
|
[92] |
张宁宁,杨英宝,于 双. 基于坡度和区域生长的城市LiDAR点云滤波方法[J]. 地理空间信息,2016,14(3):30−32.
ZHANG Ningning,YANG Yingbao,YU Shuang. Urban LiDAR point cloud filtering method based on slope and area growth[J]. Geospatial Information,2016,14(3):30−32.
|
[93] |
郑辑涛,张 涛. 基于可变半径圆环和B样条拟合的机载LiDAR点云滤波[J]. 测绘学报,2015,14(12):1359−1366.
ZHENG Jitao,ZHANG Tao. Filtering of airborne LiDAR point cloud based on variable radius circle and B-spline filting[J]. Acta Geodaetica et Cartographica Sinica,2015,14(12):1359−1366.
|
[94] |
文 沛,程英蕾,余旺盛. 基于深度学习的点云分类方法综述[J]. 激光与光电子学进展,2021,58(16):41−67.
WEN Pei,YINGLEI Cheng,WANGSHENG Yu. A review of deep learning-based point cloud classification methods[J]. Advances in Lasers and Optoelectronics,2021,58(16):41−67.
|
[95] |
利满雯,赵艳明,李绍彬,等. 点云分类方法综述[J]. 电视技术,2022,46(5):1−8.
LI Manwen,ZHAO Yanming,LI Shaobin, et al. A survey of point cloud classification[J]. Video Engineering,2022,46(5):1−8.
|
[96] |
HAN X F,JIN J S,WANG M J, et al. A review of algorithms for filtering the 3D point cloud[J]. Signal Processing:Image Communication,2017,57:103−112. doi: 10.1016/j.image.2017.05.009
|
[97] |
Janssens-CORON E,GUILBERT E. Ground point filtering from airborne lidar point clouds using deep learning: a preliminary study[J]. The International Archives of the Photogrammetry,Remote Sensing and Spatial Information Sciences,2019,XLII–2/W13:1559–1565.
|
[98] |
QIN N,TAN W,MA L, et al. Deep learning for filtering the ground from ALS point clouds:A dataset,evaluations and issues[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2023,202:246−261. doi: 10.1016/j.isprsjprs.2023.06.005
|
[99] |
ZEYBEK M,ŞANLIOĞLU İ. Point cloud filtering on UAV based point cloud[J]. Measurement,2019,133:99−111. doi: 10.1016/j.measurement.2018.10.013
|
[100] |
POLAT N,UYSAL M. Investigating performance of Airborne LiDAR data filtering algorithms for DTM generation[J]. Measurement,2015,63:61−68. doi: 10.1016/j.measurement.2014.12.017
|
[101] |
TóVáRI D,PFEIFER N. Segmentation based robust interpolation- A new Approach to laser data filtering[J]. International Archives of Photogrammetry,Remote Sensing and Spatial Information Sciences,2005,36(3):79−84.
|
[102] |
QIAN Yang,FUQUAN Tang,FEI Wang, et al. A new technical pathway for extracting high accuracy surface deformation information in coal mining areas using UAV LiDAR data:An example from the Yushen mining area in western China[J]. Measurement,2023,218:113220. doi: 10.1016/j.measurement.2023.113220
|
[103] |
何柯璐. 基于机载激光扫描特征点云的采煤沉陷信息提取[D]. 西安: 西安科技大学,2021.
HE Kelu. Coal mining subsidence information extraction based on airborne laser scanning feature point cloud[D]. Xi’an: Xi’an University of Science and Technology,2021.
|
[104] |
何柯璐,汤伏全,李振洪. 基于地形特征的采煤沉陷盆地构建与水平移动信息智能提取方法[J]. 武汉大学学报(信息科学版),2023,48(5):717−729.
HE Kelu,TANG Fuquan,LI Zhenhong. Intelligent extraction method of coal mining subsidence basin construction and horizontal movement information based on topographic features[J]. Geomatics and Information Science of Wuhan University,2023,48(5):717−729.
|
[105] |
张小红. 机载激光雷达测量技术理论与方法[M]. 武汉:武汉大学出版社,2007.
ZHANG Xiaohong. Theory and methods of airborne lidar measurement technology[M]. Wuhan:Wuhan University Press,2007.
|
[106] |
D’Aranno P J V,P. D’Aranno,Di BENEDETTO A, et al. Remote sensing technologies for linear infrastructure monitoring[J]. ISPRS – International Archives of the Photogrammetry,Remote Sensing and Spatial Information Sciences,2019,4211:461−468.
|
[107] |
JÓŹKÓW G,WALICKA A,BORKOWSKI A. Monitoring terrain deformations caused by underground mining using UAV data[J]. The International Archives of the Photogrammetry,Remote Sensing and Spatial Information Sciences,2021:737–744.
|
[108] |
刘继琳,李 军. 多源遥感影像融合[J]. 遥感学报,1998(1):47−50.
LIU Jilin, LI Jun. Multi-source remote sensing image data fusion[J]. Journal of Remote Sensing,1998(1):47−50.
|
[109] |
POHL C,Van GENDEREN J L. Review article Multisensor image fusion in remote sensing:Concepts,methods and applications[J]. International Journal of Remote Sensing,1998,19(5):823−854. doi: 10.1080/014311698215748
|
[110] |
贾永红,李德仁. 多源遥感影像像素级融合分类与决策级分类融合法的研究[J]. 武汉大学学报(信息科学版),2001(5):430−434.
JIA Yonghong,LI Deren. An Approach of Classification Base don Pixel Level and Decision Level Fusion of Multi-source Images in Remote Sensing[J]. Geomatics and Information Science of Wuhan University,2001(5):430−434.
|
[111] |
JIXIAN Zhang. Multi-source remote sensing data fusion:status and trends[J]. International Journal of Image and Data Fusion,2010,1(1):5−24. doi: 10.1080/19479830903561035
|
[112] |
AIAZZI B,BARONTI S,SELVA M. Improving component substitution pansharpening through multivariate regression of MS +Pan data[J]. IEEE Transactions on Geoscience and Remote Sensing,2007,45(10):3230−3239. doi: 10.1109/TGRS.2007.901007
|
[113] |
LI X,CHEN H,ZHOU J, et al. Improving component substitution pan-sharpening through refinement of the injection detail[J]. Photogrammetric Engineering and Remote Sensing,2020,86(5):317−325. doi: 10.14358/PERS.86.5.317
|
[114] |
ZHANG Y. A new merging method and its spectral and spatial effects[J]. International Journal of Remote Sensing,1999,20(10):2003−2014. doi: 10.1080/014311699212317
|
[115] |
LIU J G. Smoothing Filter-based Intensity Modulation:A spectral preserve image fusion technique for improving spatial details[J]. International Journal of Remote Sensing,2000,21(18):3461−3472. doi: 10.1080/014311600750037499
|
[116] |
AIAZZI B,ALPARONE L,BARONTI S, et al. Context-driven fusion of high spatial and spectral resolution images based on oversampled multiresolution analysis[J]. IEEE Transactions on Geoscience and Remote Sensing,2002,40(10):2300−2312. doi: 10.1109/TGRS.2002.803623
|
[117] |
AMOLINS K,ZHANG Y,DARE P. Wavelet based image fusion techniques — An introduction,review and comparison[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2007,62(4):249−263. doi: 10.1016/j.isprsjprs.2007.05.009
|
[118] |
Sukawattanavijit C,CHEN J,ZHANG H. GA–SVM algorithm for improving land-cover classification using SAR and optical remote sensing data[J]. IEEE Geoscience and Remote Sensing Letters,2017,14(3):284−288. doi: 10.1109/LGRS.2016.2628406
|
[119] |
Anonymous. Exploring the optimal integration levels between SAR and optical data for better urban land cover mapping in the Pearl River Delta[J]. International Journal of Applied Earth Observation and Geoinformation,2018,64:87−95. doi: 10.1016/j.jag.2017.08.013
|
[120] |
KONG Y,YAN B,LIU Y, et al. Feature-level fusion of polarized SAR and optical images based on random forest and conditional random fields[J]. Remote Sensing,2021,13(7):1323. doi: 10.3390/rs13071323
|
[121] |
雷俊杰,杨武年,李 红,等. 哨兵光学及SAR卫星影像协同分类研究[J]. 现代电子技术,2022,45(2):135−139.
LEI Junjie,YANG Wunian,LI Hong, et al. Research on cooperative classification of sentinel optical and sar satellite images[J]. Modern Electronics Technique,2022,45(2):135−139.
|
[122] |
姜 文,潘 洁,朱金彪,等. 基于空间与光谱注意力的光学图像和SAR图像特征融合分类方法[J]. 电子与信息学报,2023,45(3):987−995.
JIANG Wen,PAN Jie,ZHU Jinbiao, et al. Feature Fusion Classification for Optical Image and SAR Image Based on Spatial-spectral Attention[J]. Journal of Electronics & Information Technology,2023,45(3):987−995.
|
[123] |
ROTTENSTEINER F. Automatic generation of high-quality building models from lidar data[J]. IEEE Computer Graphics and Applications,2003,23(6):42−50. doi: 10.1109/MCG.2003.1242381
|
[124] |
MOOSAVI V,TALEBI A,MOKHTARI M H, et al. A wavelet-artificial intelligence fusion approach(WAIFA) for blending Landsat and MODIS surface temperature[J]. Remote Sensing of Environment,2015,169:243−254. doi: 10.1016/j.rse.2015.08.015
|
[125] |
VERRELST J,GEERLING G W,SYKORA K V, et al. Mapping of aggregated floodplain plant communities using image fusion of CASI and LiDAR data[J]. International Journal of Applied Earth Observation and Geoinformation,2009,11(1):83−94. doi: 10.1016/j.jag.2008.09.001
|
[126] |
SWETNAM T L,GILLAN J K,SANKEY T T, et al. Considerations for achieving cross-platform point cloud data fusion across different dryland ecosystem structural states[J]. Frontiers in Plant Science,2018,8:2144. doi: 10.3389/fpls.2017.02144
|
[127] |
HäNSCH R,WEBER T,HELLWICH O. Comparison of 3D interest point detectors and descriptors for point cloud fusion[J]. ISPRS Annals of the Photogrammetry,Remote Sensing and Spatial Information Sciences,2014,2:57−64.
|
[128] |
GHAMISI P,HöFLE B. LiDAR data classification using extinction profiles and a composite kernel support vector machine[J]. IEEE Geoscience and Remote Sensing Letters,2017,14(5):659−663. doi: 10.1109/LGRS.2017.2669304
|
[129] |
BOULCH A,SAUX B L,AUDEBERT N. Unstructured point cloud semantic labeling using deep segmentation networks[J]. The Eurographics Association,2017,3:17−24.
|
[130] |
朱鹏程. 矿区地表变形的无人机监测方法及应用研究[D]. 徐州: 中国矿业大学,2021.
ZHU Pengcheng. Research on UAV monitoring method and application of surface deformation in mining area[D]. Xuzhou: China University of Mining and Technology,2021.
|
[131] |
PUNIACH E,GRUSZCZYŃSKI W,ĆWIĄKAŁA P, et al. Application of UAV-based orthomosaics for determination of horizontal displacement caused by underground mining[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2021,174:282−303. doi: 10.1016/j.isprsjprs.2021.02.006
|
[132] |
ĆWIĄKAŁA P,GRUSZCZYŃSKI W,STOCH T, et al. UAV applications for determination of land deformations caused by underground mining[J]. Remote Sensing,2020,12(11):1733. doi: 10.3390/rs12111733
|
[133] |
WANG S,BAI Z,LYU Y, et al. Monitoring extractive activity-induced surface subsidence in highland and alpine opencast coal mining areas with multi-source data[J]. Remote Sensing,2022,14(14):3442. doi: 10.3390/rs14143442
|