Citation: | CUI Chunyang,LI Chunyuan,WANG Meimei,et al. Failure test and strength model of high-porous low-cementitious waste backfilling material[J]. Coal Science and Technology,2023,51(9):77−87. DOI: 10.12438/cst.2023-0915 |
In order to alleviate the shortage of underground aggregate sources and time cost of vibration and compaction during backfilling, a new type of high-porous low-cementitious waste backfilling material (HPLCM), which was composed of self-compacting slurry and loose packing waste with high porosity, was developed to achieve the purpose of low cementitious backfilling. Uniaxial compression tests were carried out on HPLCM in the laboratory, using orthogonal strength variables of cement slurry and waste aggregate, to study their failure strength characteristics and statistical laws. Considering the combined impact of solid waste and slurry strength, a generalized strength model of shear fracture was established based on the fracture statistical results. The coupled strength utilization ratio of solid waste aggregate and self-compacted slurry was defined, and the optimal ratio and cost of mix proportion of HPLCM were analyzed. The results indicate that the uniaxial compressive strength and failure mode of HPLCM are jointly controlled by the component strength of self-compacting cementitious slurry and solid waste aggregate. The strength of both components has a positive correlation with the strength of HPLCM, which is limited by the weaker component, and when one component grows stronger, the failure mode will be dominated by the other component. The uniaxial compressive test of HPLCM presents shear failure modes, including shear planes in single oblique and cross oblique patterns with an average angle of 55.4°. The density of loose packing aggregates can be reduced from 85% to 58% by using the proposed backfilling material, and the strength of cementitious slurry can be optimized within the optimal mixing range to maximize the utilization of filling material strength when the strength of in-situ solid waste aggregates is obtained. Thus, the compaction time of solid filling and the amount of single gangue can be reduced.
[1] |
刘建功,李新旺,何 团. 我国煤矿充填开采应用现状与发展[J]. 煤炭学报,2020,45(1):141−150.
LIU Jiangong,LI Xinwang,HE Tuan. Application status and prospect of backfill mining in Chinese coal mines[J]. Journal of China Coal Society,2020,45(1):141−150.
|
[2] |
刘建功,毕锦明,赵利涛,等. 综合机械化固体充填采煤自动控制研究与应用[J]. 煤炭科学技术,2016,44(1):149−156.
LIU Jiangong,BI Jinming,ZHAO Litao,et al. Research and application on automatic control of comprehensive mechanized solid backfill coal mining[J]. Coal Science and Technology,2016,44(1):149−156.
|
[3] |
张吉雄,张 强,巨 峰,等. 煤矿“采选充+X”绿色化开采技术体系与工程实践[J]. 煤炭学报,2019,44(1):64−73.
ZHANG Jixiong,ZHANG Qiang,JU Feng,et al. Practice and technique of green mining with integration of mining, dressing, backfilling and X in coal resources[J]. Journal of China Coal Society,2019,44(1):64−73.
|
[4] |
张吉雄,张 强,巨 峰,等. 深部煤炭资源采选充绿色化开采理论与技术[J]. 煤炭学报,2018,43(2):377−389. doi: 10.13225/j.cnki.jccs.2017.4102
ZHANG Jixiong,ZHANG Qiang,JU Feng,et al. Theory and technique of greening mining integrating mining, separating and backfilling in deep coal resources[J]. Journal of China Coal Society,2018,43(2):377−389. doi: 10.13225/j.cnki.jccs.2017.4102
|
[5] |
张吉雄,屠世浩,曹亦俊,等. 深部煤矿井下智能化分选及就地充填技术研究进展[J]. 采矿与安全工程学报,2020,37(1):1−10, 22.
ZHANG Jixiong,TU Shihao,CAO Yijun,et al. Research progress of technologies for intelligent separation and in-situ backfill in deep coal mines in China[J]. Journal of Mining & Safety Engineering,2020,37(1):1−10, 22.
|
[6] |
许家林,轩大洋,朱卫兵,等. 部分充填采煤技术的研究与实践[J]. 煤炭学报,2015,40(6):1303−1312.
XU Jialin,XUAN Dayang,ZHU Weibing,et al. Study and application of coal mining with partial backfilling[J]. Journal of China Coal Society,2015,40(6):1303−1312.
|
[7] |
缪协兴,巨 峰,黄艳利,等. 充填采煤理论与技术的新进展及展望[J]. 中国矿业大学学报,2015,44(3):391−399, 429.
MIAO Xiexing,JU Feng,HUANG Yanli,et al. New development and prospect of backfilling mining theory and technology[J]. Journal of China University of Mining and Technology,2015,44(3):391−399, 429.
|
[8] |
陈绍杰,郭惟嘉,周 辉,等. 条带煤柱膏体充填开采覆岩结构模型及运动规律[J]. 煤炭学报,2011,36(7):1081−1086.
CHEN Shaojie,GUO Weijia,ZHOU Hui,et al. Structure model and movement law of overburden during strip pillar mining backfill with cream-body[J]. Journal of China Coal Society,2011,36(7):1081−1086.
|
[9] |
YILMAZ Erol,BELEM Tikou,BENZAAZOU Mostafa. Effects of curing and stress conditions on hydromechanical, geotechnical and geochemical properties of cemented paste backfill[J]. Engineering Geology,2014,168:23−37. doi: 10.1016/j.enggeo.2013.10.024
|
[10] |
冯国瑞,解文硕,郭育霞,等. 早期受载对矸石胶结充填体力学特性及损伤破坏的影响[J]. 岩石力学与工程学报,2022,41(4):775−784.
FENG Guorui,XIE Wenshuo,GUO Yuxia,et al. Effect of early load on mechanical properties and damage of cemented gangue backfill[J]. Chinese Journal of Rock Mechanics and Engineering,2022,41(4):775−784.
|
[11] |
吴疆宇,靖洪文,浦 海,等. 分形矸石胶结充填体的宏细观力学特性[J]. 岩石力学与工程学报,2021,40(10):2083−2100.
WU Jiangyu,JING Hongwen,PU Hai,et al. Macroscopic and mesoscopic mechanical properties of cemented waste rock backfill using fractal gangue[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(10):2083−2100.
|
[12] |
常庆粮,周华强,秦剑云,等. 膏体充填材料配比的神经网络预测研究[J]. 采矿与安全工程学报,2009,26(1):74−77. doi: 10.3969/j.issn.1673-3363.2009.01.014
CHANG Qingliang,ZHOU Huaqiang,QIN Jianyun,et al. Using artificial neural network model to determine the prescription of paste filling materials[J]. Journal of Mining & Safety Engineering,2009,26(1):74−77. doi: 10.3969/j.issn.1673-3363.2009.01.014
|
[13] |
唐 海,赵海龙,黄靖龙,等. 煤矿膏体充填材料配比试验研究[J]. 华北科技学院学报,2015,12(4):43−47, 52. doi: 10.3969/j.issn.1672-7169.2015.04.009
TANG Hai,ZHAO Hailong,HUANG Jinglong,et al. Study on proportion experiment of paste filling material in coal mine[J]. Journal of North China Institute of Science and Technology,2015,12(4):43−47, 52. doi: 10.3969/j.issn.1672-7169.2015.04.009
|
[14] |
李建忠,弓培林,刘士奇,等. 基于正交试验的煤基膏体料浆配比优化研究[J]. 矿业研究与开发,2017,37(3):29−32. doi: 10.13827/j.cnki.kyyk.2017.03.006
LI Jianzhong,GONG Peilin,LIU Shiqi,et al. Research on proportion optimization of coal-based paste slurry based on orthogonal experiment[J]. Mining Research and Development,2017,37(3):29−32. doi: 10.13827/j.cnki.kyyk.2017.03.006
|
[15] |
杨 啸,杨志强,高 谦,等. 混合充填骨料胶结充填强度试验与最优配比决策研究[J]. 岩土力学,2016,37(S2):635−641.
YANG Xiao,YANG Zhiqiang,GAO Qian,et al. Cemented filling strength test and optimal proportion decision of mixed filling aggregate[J]. Rock and Soil Mechanics,2016,37(S2):635−641.
|
[16] |
PHAN Van Viet,王 东. 热电厂炉渣作为煤矿膏体充填材料的配比试验研究[J]. 中国安全生产科学技术,2018,14(1):49−55. doi: 10.11731/j.issn.1673-193x.2018.01.008
PHAN Van Viet,WANG Dong. Experimental study on proportioning of bottom ash in thermal power plant as paste filling material of coal mine[J]. Journal of Safety Science and Technology,2018,14(1):49−55. doi: 10.11731/j.issn.1673-193x.2018.01.008
|
[17] |
刘鹏亮. 固料特性对煤矿充填料浆流动性影响规律研究[D]. 北京: 煤炭科学研究总院, 2021.
LIU Pengliang. Study on the influence of solid properties on the fluidity of coal mine filling slurry[D]. Beijing: Chinese Coal Research Institute, 2021.
|
[18] |
ZHANG Zhihong,LI Jiacheng. Experimental investigation on strength and failure characteristics of cemented paste backfill[J]. Frontiers in Materials,2021(8):792561.
|
[19] |
余伟健,万 幸,刘芳芳,等. 红土膏体充填材料及其物理特性试验研究[J]. 煤炭科学技术,2021,49(2):61−68.
YU Weijian,WAN Xing,LIU Fangfang,et al. Experimental study on red clay paste backfilling material and its physical characteristics[J]. Coal Science and Technology,2021,49(2):61−68.
|
[20] |
刘旭锋. 高水巷旁充填材料的力学特性与应用研究[D]. 焦作: 河南理工大学, 2017.
LIU Xufeng. Study on mechanical properties and applications of high-water roadside filling material[D]. Jiaozuo: Henan Polytechnic University, 2017.
|
[21] |
李西凡,熊祖强,张耀辉,等. 沿空留巷高水充填材料改性试验及工程应用[J]. 重庆大学学报,2020,43(4):94−106.
LI Xifan,XIONG Zuqiang,ZHANG Yaohui,et al. Modification test and engineering application of high-water filling material in gob-side entry retaining[J]. Journal of Chongqing University,2020,43(4):94−106.
|
[22] |
卞 卡,柏建彪,赵 涛,等. 综采工作面高水材料空巷充填技术与应用[J]. 煤炭技术,2021,40(5):37−40.
BIAN Ka,BAI Jianbiao,ZHAO Tao,et al. Technology and application of filling abandoned roadway with high water material in fully-mechanized working face[J]. Coal Technology,2021,40(5):37−40.
|
[23] |
王 䶮,熊祖强,苏承东. 改性高水充填支柱材料尺寸效应及破坏特征分析[J]. 煤炭科学技术,2021,49(12):82−88. doi: 10.3969/j.issn.0253-2336.2021.12.mtkxjs202112010
WANG Yan,XIONG Zuqiang,SU Chengdong. Analysis on size effect and failure characteristics of filling pillars with modified high-water material[J]. Coal Science and Technology,2021,49(12):82−88. doi: 10.3969/j.issn.0253-2336.2021.12.mtkxjs202112010
|
[24] |
刘运华,谢友均,龙广成. 自密实混凝土研究进展[J]. 硅酸盐学报,2007,35(5):671−678. doi: 10.3321/j.issn:0454-5648.2007.05.028
LIU Yunhua,XIE Youjun,LONG Guangcheng. Progress of research on self-compacting concrete[J]. Journal of the Chinese Ceramic Society,2007,35(5):671−678. doi: 10.3321/j.issn:0454-5648.2007.05.028
|
[25] |
金 峰,安雪晖,石建军,等. 堆石混凝土及堆石混凝土大坝[J]. 水利学报,2005,36(11):78−83. doi: 10.13243/j.cnki.slxb.2005.11.013
JIN Feng,AN Xuehui,SHI Jianjun,et al. Study on rock-fill concrete dam[J]. Journal of Hydraulic Engineering,2005,36(11):78−83. doi: 10.13243/j.cnki.slxb.2005.11.013
|
[26] |
WANG Wei,JIN Feng,WANG Bohao,et al. Adhesion behavior and deposition morphology of cement grout flowing through granular materials[J]. Construction and Building Materials,2022,337(1):127547.
|
[27] |
WANG Wei,PAN Jianwen,JIN Feng,et al. Effect of cement matrix on mechanical properties of cemented granular materials[J]. Powder Technology,2019,350:107−116. doi: 10.1016/j.powtec.2019.03.040
|
[28] |
CUI Chunyang,WANG Wei,JIN Feng,et al. Discrete-element modeling of cemented granular material using mixed-mode cohesive zone model[J]. Journal of Materials in Civil Engineering,2020,32(4):04020031. doi: 10.1061/(ASCE)MT.1943-5533.0003069
|
[29] |
中华人民共和国住房和城乡建设部. GB/T 50081—2016 普通混凝土力学性能试验方法标准[S]. 北京: 中国建筑工业出版社, 2016.
|
[30] |
杜 锋,王 凯,董香栾,等. 基于CT三维重构的煤岩组合体损伤破坏数值模拟研究[J]. 煤炭学报,2021,46(S1):253−262.
DU Feng,WANG Kai,DONG Xiangluan,et al. Numerical simulation of damage and failure of coal-rock combination based on CT three-dimensional reconstruction[J]. Journal of China Coal Society,2021,46(S1):253−262.
|
[31] |
杨宝贵,杨 捷. 煤矿充填技术发展趋势与选用方法[J]. 矿业研究与开发,2015,35(5):11−15. doi: 10.13827/j.cnki.kyyk.2015.05.004
YANG Baogui,YANG Jie. Development and selection on filling technology of coal mine[J]. Mining Research and Development,2015,35(5):11−15. doi: 10.13827/j.cnki.kyyk.2015.05.004
|