Advance Search

XIE Xiaoshen,HOU Enke,WANG Shuangming,et al. Syudy on water loss model and prediction technology of aquifer induced by coal mining in Yushenfu Mining Area in the middle reaches of the Yellow River[J]. Coal Science and Technology,2023,51(12):197−207

. DOI: 10.12438/cst.2023-0860
Citation:

XIE Xiaoshen,HOU Enke,WANG Shuangming,et al. Syudy on water loss model and prediction technology of aquifer induced by coal mining in Yushenfu Mining Area in the middle reaches of the Yellow River[J]. Coal Science and Technology,2023,51(12):197−207

. DOI: 10.12438/cst.2023-0860

Syudy on water loss model and prediction technology of aquifer induced by coal mining in Yushenfu Mining Area in the middle reaches of the Yellow River

Funds: 

National Natural Science Foundation of China(42177174); Central Leading Local Science and Technology Innovation Special Funding Project (2020ZY-JC-03); Shaanxi Postdoctoral Research Funding Project (2023BSHEDDZZ297)

More Information
  • Received Date: June 10, 2023
  • Available Online: November 17, 2023
  • The contradiction between coal and water has become the main factor restricting the safe, efficient and green mining of coal in Yushenfu Mining Area. In order to alleviate the contradiction and effectively protect water resources and ecological environment, a typical coal mine in Yushenfu Mining Area is taken as an example. This research reveals the characteristics of coal water occurrence, establishes the water loss model of mining-influenced aquifer, and preliminarily explores the overall strategy and technology of water resources protection. The study indicates that there are two types of water resources in the Yushenfu Mining Area: surface water and groundwater. The surface water exists in the form of lakes, surface runoff and springs, while groundwater includes the Sa’la Wusu Formation confined water, metamorphic rock water, and weathered bedrock water. Based on the relationship between aquifers and water-conducting fracture zones, two types of aquifers are identified: low-level aquifer and high-level aquifer. The water loss model for low-level aquifers is characterized by leakage through connecting pathways. For high-level aquifers, there are two water loss models: non-conductive vertical seepage and seepage overflow evaporation. The former occurs in high-pressure confined aquifers, while the latter is mainly for high-level phreatic aquifers. For low-level aquifers, protection involves the development of height-controlled technology in water-conducting fracture zones and post-mining roof grouting reinforcement technology. For high-level aquifers, protection measures include the construction of artificial water barriers, separation grouting, and coordinated mining technology. In cases where water cannot be protected in situ and flows into mined-out areas, comprehensive water utilization technologies such as underground water storage, purification, recycling, and deep injection can be employed to indirectly achieve water resource protection in the mining area.

  • [1]
    彭苏萍,毕银丽. 黄河流域煤矿区生态环境修复关键技术与战略思考[J]. 煤炭学报,2020,45(4):1211−1221.

    PENG Sunping,BI Yinli. Strategic consideration and core technology about environmental ecological restoration in coal mine areas in the Yellow River basin of China[J]. Journal of China Coal Society,2020,45(4):1211−1221.
    [2]
    卞正富,于昊辰,雷少刚,等. 黄河流域煤炭资源开发战略研判与生态修复策略思考[J]. 煤炭学报,2021,46(5):1378−1391. doi: 10.13225/j.cnki.jccs.ST21.0249

    BIAN Zhengfu,YU Haochen,LEI Shaogang, et al. Strategic consideration of exploitation on coal resources and its ecological restoration in the Yellow River basin of China[J]. Journal of China Coal Society,2021,46(5):1378−1391. doi: 10.13225/j.cnki.jccs.ST21.0249
    [3]
    范立民,吴群英,彭 捷,等. 黄河中游大型煤炭基地地质环境监测思路和方法[J]. 煤炭学报,2021,46(5):1417−1427. doi: 10.13225/j.cnki.jccs.st21.0233

    FAN Limin,WU Qunying,PENG Jie, et al. Thoughts and methods of geological environment monitoring for large coal bases in the middle reaches of the Yellow River[J]. Journal of China Coal Society,2021,46(5):1417−1427. doi: 10.13225/j.cnki.jccs.st21.0233
    [4]
    柳 宁,赵晓光,解海军,等. 榆神府地区煤炭开采对地下水资源的影响[J]. 西安科技大学学报,2019,39(1):71−78. doi: 10.13800/j.cnki.xakjdxxb.2019.0111

    LIU Ning,ZHAO Xiaoguang,XIE Haijun, et al. Influence of coal mining on groundwater resources in Yushenfu Area[J]. Journal of Xi’an University of Science and Technology,2019,39(1):71−78. doi: 10.13800/j.cnki.xakjdxxb.2019.0111
    [5]
    范立民,向茂西,彭 捷,等. 西部生态脆弱矿区地下水对高强度采煤的响应[J]. 煤炭学报,2016,41(11):2672−2678. doi: 10.13225/j.cnki.jccs.2016.0243

    FAN Limin,XIANG Maoxi,PENG Jie, et al. Groundwater response to intensive mining in ecologically fragile area[J]. Journal of China Coal Society,2016,41(11):2672−2678. doi: 10.13225/j.cnki.jccs.2016.0243
    [6]
    王双明,申艳军,孙 强,等. 西部生态脆弱区煤炭减损开采地质保障科学问题及技术展望[J]. 采矿与岩层控制工程学报,2020,2(4):5−19.

    WANG Shuangming,SHEN Yanjun,SUN Qiang, et al. Scientific issues of coal detraction mining geological assurance and their technology expectations in ecologically fragile mining areas of Western China[J]. Journal of Mining and Strata Control Engineering,2020,2(4):5−19.
    [7]
    FAN Limin,MA Liqiang,YU Yihe, et al. Water-conserving mining influencing factors identification and weight determination in northwest China[J]. International Journal of Coal Science & Technology,2019,6(1):95−101.
    [8]
    李 涛,高 颖,郭亮亮,等. 沙漠浅滩煤炭大规模开采潜水影响研究[J]. 矿业研究与开发,2019,39(12):100−103. doi: 10.13827/j.cnki.kyyk.2019.12.018

    LI Tao,GAO Ying,GUO Liangliang, et al. Study on the impact of large-scale coal mining on Phreatic Aquifer in desert shoal[J]. Ming R & D,2019,39(12):100−103. doi: 10.13827/j.cnki.kyyk.2019.12.018
    [9]
    仵拨云,彭 捷,向茂西,等. 榆神府矿区保水采煤受保护萨拉乌苏组含水层研究[J]. 采矿与安全工程学报,2018,35(5):984–990.

    WU Boyun,PENG Jie,XIANG Maoxi,et al Research on Salawusu formation aquifer protected by water preserving mining in Yushenfu mining area [J]. Journal of Mining & Safety Engineering,2018,35(5):984–990.
    [10]
    彭 捷, 李 成, 向茂西, 等. 榆神府矿区采动对潜水含水层的影响及其环境效应[J]. 煤炭科学技术,2018,46(2):156−162.

    PENG Jie, LI Cheng, XIANG Maoxi. Influence of coal mining on phreatic aquifer and its environmental effects in Yulin-Shenmu-Fugu Area[J]. Coal Science and Technology,2018,46(2):156−162.
    [11]
    侯恩科,纪卓辰,车晓阳,等. 基于改进 AHP 和熵权法耦合的风化基岩富水性预测方法[J]. 煤炭学报,2019,44(10):3164−3173.

    HOU Enke,JI Zhuochen,CHE Xiaoyang, et al. Water abundance prediction method of weathered bedrock based on improved AHP and the entropy weight method[J]. Journal of China Coal Society,2019,44(10):3164−3173.
    [12]
    侯恩科, 车晓阳, 冯 洁, 等. 榆神府矿区含水层富水特征及保水采煤途径[J]. 煤炭学报,2019,44(3):813−820.

    HOU Enke, CHE Xiaoyang, FENG Jie, et al. Abundance of aquifers in Yushenfu coal field and the measures for water-preserved coal mining[J]. Journal of China Coal Society,2019,44(3):813−820.
    [13]
    侯恩科,谢晓深,王双明,等. 中深埋厚煤层开采地下水位动态变化规律及形成机制 [J]. 煤炭学报,2021,46(5):1404–1406.

    HOU Enke,XIE Xiaoshen,WANG Shuangming,et al. Dynamic law and mechanism of groundwater induced by medium-deep buried and thick coal seam mining. Journal of China Coal Society,2021,46(5):1404–1406.
    [14]
    王双明,侯恩科,谢晓深,等. 中深部煤层开采对地表生态环境的影响及修复提升途径研究[J]. 煤炭科学技术,2021,49(1):19−31. doi: 10.13199/j.cnki.cst.2021.01.003

    WANG Shuangming,HOU Enke,XIE Xiaoshen, et al. Study on influence of surface ecological environment caused by middle deep coal mining and the ways of restoration[J]. Coal Science and Technology,2021,49(1):19−31. doi: 10.13199/j.cnki.cst.2021.01.003
    [15]
    王双明,黄庆享,范立民,等. 生态脆弱区煤炭开发与生态水位保护[M]. 北京:科学出版社,2010.
    [16]
    靳德武,周振方,赵春虎,等. 西部浅埋煤层开采顶板含水层水量损失动力学过程特征[J]. 煤炭学报,2019,44(3):690−700. doi: 10.13225/j.cnki.jccs.2018.6033

    JIN Dewu,ZHOU Zhenfang,ZHAO Chunhu, et al. Dynamics process analysis of groundwater quantity loss of roof aquifer with shallow seam mining in Western China[J]. Journal of China Coal Society,2019,44(3):690−700. doi: 10.13225/j.cnki.jccs.2018.6033
    [17]
    赵春虎,靳德武,李智学,等. 陕北榆神矿区煤层开采顶板涌水规律分析[J]. 煤炭学报,2021,46(2):523–533.

    ZHAO Chunhu,JIN Dewu,LI Zhixue,et al. Analysis of overlying aquifer water inrush above mining seam in Yushen mining area. Journal of China Coal Society,2021,46(2):523–533.
    [18]
    侯恩科,童仁剑,冯 洁,等. 烧变岩富水特征与采动水量损失预计[J]. 煤炭学报,2017,42(1):175−182. doi: 10.13225/j.cnki.jccs.2016.5055

    HOU Enke,Tong Renjian,Feng Jie, et al. Water enrichment characteristics of burnt rock and prediction on water loss caused by coal mining[J]. Journal of China Coal Society,2017,42(1):175−182. doi: 10.13225/j.cnki.jccs.2016.5055
    [19]
    范立民,马雄德,蒋泽泉,等. 保水采煤研究 30 年回顾与展望[J]. 煤炭科学技术,2019,47(7):1−30.

    FAN Limin,MA Xiongde,JIANG Zequan, et al. Review and thirty years prospect of research on water-preserved coal mining[J]. Coal Science and Technology,2019,47(7):1−30.
    [20]
    马立强,余伊何,SPEARING A J S. 保水采煤方法及其适用性分区——以榆神矿区为例[J]. 采矿与安全工程学报,2019,36(6):1079−1085. doi: 10.13545/j.cnki.jmse.2019.06.002

    MA Liqiang,Yuyihe, SPEARING A J S. Water conservation mining method and its applicability:a case study in Yushen mining area[J]. Journal of Mining & Safety Engineering,2019,36(6):1079−1085. doi: 10.13545/j.cnki.jmse.2019.06.002
    [21]
    李文平,王启庆,刘士亮,等. 生态脆弱区保水采煤矿井(区)等级类型[J]. 煤炭学报,2019,44(3):718−726. doi: 10.13225/j.cnki.jccs.2018.6031

    LI Wenping,WANG Qiqing,LIU Shiliang, et al. Grade types of water-preserved coal mining coalmines in ecologically fragile area[J]. Journal of China Coal Society,2019,44(3):718−726. doi: 10.13225/j.cnki.jccs.2018.6031
    [22]
    XU Yujun,MA Liqiang,Naseer Muhammad Khan. Prediction and maintenance of water resources carrying capacity in mining area—a case study in the Yu-Shen mining area[J]. Sustainability,2020,12:7782. doi: 10.3390/su12187782
    [23]
    LIU Shiliang,LI Wenping. Zoning and management of phreatic water resource conservation impacted by underground coal mining:A cause study in arid and semiarid areas[J]. Journal of Cleaner Production,2019,224:677−685. doi: 10.1016/j.jclepro.2019.03.282
    [24]
    胡 鑫,孙 强,晏 长,等. 陕北烧变岩水−岩作用的劣化特性[J]. 煤田地质与勘探,2023,51(4):76−84. doi: 10.12363/issn.1001-1986.22.06.0496

    HU Xin,SUN Qiang,YAN Changgen, et al. Deterioration characteristics of water-rock interaction on combustion metamorphic rocks in northern Shaanxi[J]. Coal Geology & Exploration,2023,51(4):76−84. doi: 10.12363/issn.1001-1986.22.06.0496
    [25]
    张 强,杨 康,张 昊,等. 固体充填开采矿压显现弱化规律及表征研究[J]. 中国矿业大学学报,2021,50(3):479−488. doi: 10.13247/j.cnki.jcumt.001279

    ZHANG Qiang,YANG Kang,ZHANG Hao, et al. Research on weakening law and quantitative characterization of strata behavior in solid filling mining[J]. Journal of China University of Ming & Technology,2021,50(3):479−488. doi: 10.13247/j.cnki.jcumt.001279
    [26]
    许家林,王晓振,刘文涛,等. 覆岩关键层位置对导水裂隙带高度的影响[J]. 岩石力学与工程学报,2009,28(2):380−385.

    XU Jialin,WANG Xiaozhen,LIU Wentao, et al. Effects of primary key stratum location on height of water flowing fracture zone[J]. Chinese Journal of Rock Mechanics and Engineering,2009,28(2):380−385.
    [27]
    赵旦实. 基于顶板预裂爆破关键层改性防治压架突水灾害[J]. 山西焦煤科技,2017(11):8−11. doi: 10.3969/j.issn.1672-0652.2017.11.003

    ZHAO Danshi. Technologies on prevention and control of water inrush hazard stress caused support-crushing based on pre-splitting blasting in key stratum above roof[J]. Shanxi Coking Coal Science & Technology,2017(11):8−11. doi: 10.3969/j.issn.1672-0652.2017.11.003
    [28]
    付 翔. 顶板预裂爆破技术在防治技术上覆承压含水层突水中的应用[J]. 能源技术与管理,2016,41(4):59−61. doi: 10.3969/j.issn.1672-9943.2016.04.022
    [29]
    李金龙,张允强,徐新启,等. 高家堡煤矿煤层顶板注浆加固堵水技术探讨[J]. 煤田地质与勘探,2019,47(S1):20−25.

    LI Jinlong,ZHANG Yunqiang,XU Xinqi, et al. Reinforcement and water plugging technology of roof grouting in Gaojiabao coal mine[J]. Coal Geology & Exploration,2019,47(S1):20−25.
    [30]
    赵春虎,王 皓,靳德武. 煤层开采覆岩预裂–注浆改性失水控制方法探讨[J]. 煤田地质与勘探,2021,49(2):159−167.

    ZHAO Chunhu,WANG Hao,JIN Dewu. Discussion on roof water loss control method of coal seam based on pre-splitting grouting reformation(P–G)[J]. Coal Geology & Exploration,2021,49(2):159−167.
    [31]
    赵 辉. 覆岩离层注浆充填开采方案及应用分析[J]. 煤炭技术,2021,40(3):12−14. doi: 10.13301/j.cnki.ct.2021.03.004

    ZHAO Hui. Application analysis of mining project grouting and filling of overburden separated layer[J]. Coal Technology,2021,40(3):12−14. doi: 10.13301/j.cnki.ct.2021.03.004
    [32]
    卢家欣,汤伏全,赵军仪,等. 黄土矿区开采沉陷与地表损害研究述评[J]. 西安科技大学学报,2019,39(5):859−866. doi: 10.13800/j.cnki.xakjdxxb.2019.0516

    LU Jiaxin,TANG Fuquan,ZHAO Jun-yi, et al. Review of study on mining subsidence and ground surface damage in loess mining area[J]. Journal of Xi’an University of Science and Technology,2019,39(5):859−866. doi: 10.13800/j.cnki.xakjdxxb.2019.0516
    [33]
    余学义,王昭瞬,杨 云. 大采深综放开采地表移动变形规律[J]. 西安科技大学学报,2019,35(4):555−563. doi: 10.13800/j.cnki.xakjdxxb.2019.0401

    YU Xueyi,WANG Zhaoshun,Yang Yun. Surface movement and deformation law of fully-mechanized caving mining with large mining depth[J]. Journal of Xi’an University of Science and Technology,2019,35(4):555−563. doi: 10.13800/j.cnki.xakjdxxb.2019.0401
    [34]
    黄庆享,杜君武. 浅埋煤层群开采的区段煤柱应力与地表裂缝耦合控制研究[J]. 煤炭学报,2018,43(3):591−598. doi: 10.13225/j.cnki.jccs.2017.0462

    HUANG Qingxiang,DU Junwu. Coupling control of pillar stress and surface cracks in shallow coal seam group mining[J]. Journal of China Coal Society,2018,43(3):591−598. doi: 10.13225/j.cnki.jccs.2017.0462
    [35]
    孙亚军,张梦飞,高 尚,等. 典型高强度开采矿区保水采煤关键技术与实践[J]. 煤炭学报,2017,42(1):56−65. doi: 10.13225/j.cnki.jccs.2016.5043

    SUN Yajun,ZHANG Mengfei,GAO Shang, et al. Water-preserved mining technology and practice in typical high intensity mining area of China[J]. Journal of China Coal Society,2017,42(1):56−65. doi: 10.13225/j.cnki.jccs.2016.5043
    [36]
    WANG Qiqing,LI Wenping,LI Tao, et al. Goaf water storage and utilization in arid regions of northwest China:A case study of Shennan coal mine district[J]. Journal of Cleaner Production,2018,202:33−44. doi: 10.1016/j.jclepro.2018.08.123
    [37]
    顾大钊,李井峰,曹志国,等. 我国煤矿矿井水保护利用发展战略与工程科技[J]. 煤炭学报,2021,46(10):3079−3089. doi: 10.13225/j.cnki.jccs.2021.0917

    GU Dazhao,LI Jingfeng,CAO Zhiguo, et al. Techonlogy and engineering development strategy of water protection and utilization mine in China[J]. Journal of China Coal Society,2021,46(10):3079−3089. doi: 10.13225/j.cnki.jccs.2021.0917

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return