Advance Search

CHENG Jian,LI Hao,MA Kun,et al. Architecture and key technologies of coalmine underground vision computing[J]. Coal Science and Technology,2023,51(9):202−218

. DOI: 10.12438/cst.2023-0152
Citation:

CHENG Jian,LI Hao,MA Kun,et al. Architecture and key technologies of coalmine underground vision computing[J]. Coal Science and Technology,2023,51(9):202−218

. DOI: 10.12438/cst.2023-0152

Architecture and key technologies of coalmine underground vision computing

Funds: 

Key Funding Project for Science and Technology Innovation and Entrepreneurship of Tian Di Technology Co., Ltd. (2021-TD-ZD002, 2022-2-TD-ZD001); Innovation and Entrepreneurship Technology Special Funding Project of Coal Science Research Institute (2021-JSYF-004)

More Information
  • Received Date: February 13, 2023
  • Available Online: August 04, 2023
  • It has always been a common demand to stay away from the harsh environment with narrow space, numerous devices, complex operation process, and hidden hazards, and realize intelligent unmanned mining in the coal industry. To achieve this goal, it is very necessary for us to develop an effective theory of vision computing for underground coalmine applications. Its main task is to build effective models or frameworks for perceiving, describing, recognizing and understanding the environment of underground coalmine, and let intelligent equipment get 3D environment information in coalmine from images or videos. To effectively develop this theory and make it better for intelligent development of coalmine, this paper first analyzed the similarities and differences about computer vision and visual computing in coalmine, and proposed its composition architecture. And then, this paper introduced in detail the key technologies involved in visual computing in coalmine including visual perception and light field computing, feature extraction and feature description, semantic learning and vision understanding, 3D vision reconstruction, and sense computing integration and edge intelligence, which is followed by typical application cases of visual computing in coalmines. Finally, the development trend and prospect of underground visual computing in coalmine was given. In this section, this paper focused on concluding the key challenges and introducing two valuable applications including coalmine Augmented Reality/Mixed Reality and parallel intelligent mining. With the breakthrough of underground vision computing, it will play a more and more important role in the intelligent development of coal mines.

  • [1]
    王国法,赵国瑞,任怀伟. 智慧煤矿与智能化开采关键核心技术分析[J]. 煤炭学报,2019,44(1):34−41. doi: 10.13225/j.cnki.jccs.2018.5034

    WANG Guofa,ZHAO Guorui,REN Huaiwei. Analysis on key technologies of intelligent coal mine and intelligent mining[J]. Journal of China Coal Society,2019,44(1):34−41. doi: 10.13225/j.cnki.jccs.2018.5034
    [2]
    王国法,王 虹,任怀伟,等. 智慧煤矿2025情景目标和发展路径[J]. 煤炭学报,2018,43(2):295−305. doi: 10.13225/j.cnki.jccs.2018.0152

    WANG Guofa,WANG Hong,REN Huaiwei,et al. 2025 scenarios and development path of intelligent coal mine[J]. Journal of China Coal Society,2018,43(2):295−305. doi: 10.13225/j.cnki.jccs.2018.0152
    [3]
    范京道,徐建军,张玉良,等. 不同煤层地质条件下智能化无人综采技术[J]. 煤炭科学技术,2019,47(3):43−52. doi: 10.13199/j.cnki.cst.2019.03.006

    FAN Jingdao,XU Jianjun,ZHANG Yuliang,et al. Intelligent unmanned fully-mechanized mining technology under conditions of different seams geology[J]. Coal Science and Technology,2019,47(3):43−52. doi: 10.13199/j.cnki.cst.2019.03.006
    [4]
    王家臣,PENG Syd S,李 杨. 美国煤炭地下开采与自动化技术发展[J]. 煤炭学报,2021,46(1):36−45.

    WANG Jiachen,PENG Syd S,LI Yang. State-of-the-art in underground coal mining and automation technology in the United States[J]. Journal of China Coal Society,2021,46(1):36−45.
    [5]
    王国法,赵国瑞,胡亚辉. 5G技术在煤矿智能化中的应用展望[J]. 煤炭学报,2020,45(1):16−23. doi: 10.13225/j.cnki.jccs.YG19.1515

    WANG Guofa,ZHAO Guorui,HU Yahui. Application prospect of 5G technology in coal mine intelligence[J]. Journal of China Coal Society,2020,45(1):16−23. doi: 10.13225/j.cnki.jccs.YG19.1515
    [6]
    李首滨. 煤炭智能化无人开采的现状与展望[J]. 中国煤炭,2019,45(4):5−12. doi: 10.3969/j.issn.1006-530X.2019.04.001

    LI Shoubin. Present situation and prospect on intelligent unmanned mining at work face[J]. China Coal,2019,45(4):5−12. doi: 10.3969/j.issn.1006-530X.2019.04.001
    [7]
    CHENG J, GANG Y, BAI S, et al. An Improved GMM-based moving object detection method under sudden illumination change[J]. Communications in Computer and Information Science. 2018, 952: 178-187.
    [8]
    MARR D. Vision: A computational Investigation into the human representation and processing of visual information[M]. W. H. Freeman and Company, 1982.
    [9]
    马颂德, 张正友. 计算机视觉 : 计算理论与算法基础[M]. 北京: 科学出版社, 1998.
    [10]
    谢剑斌. 视觉计算方法[M]. 北京: 科学出版社, 2017.
    [11]
    胡占义. 计算机视觉: 历史、现状和发展趋势[EB/OL]. https://blog.csdn.net/qq_28168421/article/details/82835966, 2023-08-29.
    [12]
    陈 龙,王 晓,杨健健,等. 平行矿山: 从数字孪生到矿山智能[J]. 自动化学报,2021,47(7):1633−1645.

    CHEN Long,WANG Xiao,YANG Jianjian,et al. Parallel mining operating systems: from digital twins to mining intelligence[J]. Acta Automation Sinica,2021,47(7):1633−1645.
    [13]
    智 宁,毛善君,李 梅. 基于照度调整的矿井非均匀照度视频图像增强算法[J]. 煤炭学报,2017,42(8):2190−2197. doi: 10.13225/j.cnki.jccs.2017.0048

    ZHI Ning,MAO Shanjun,LI Mei. Enhancement algorithm based on illumination adjustment for non-uniform illumination video images in coal mine[J]. Journal of China Coal Society,2017,42(8):2190−2197. doi: 10.13225/j.cnki.jccs.2017.0048
    [14]
    范伟强,刘 毅. 基于自适应小波变换的煤矿降质图像模糊增强算法[J]. 煤炭学报,2020,45(12):4248−4260. doi: 10.13225/j.cnki.jccs.2020.0785

    FAN Weiqiang,LIU Yi. Fuzzy enhancement algorithm of coal mine degradation image based on adaptive wavelet trans form[J]. Journal of China Coal Society,2020,45(12):4248−4260. doi: 10.13225/j.cnki.jccs.2020.0785
    [15]
    吴佳奇,张文琪,陈 伟,等. 基于改进CycleGAN的煤矿井下低照度图像增强方法[J]. 华中科技大学学报(自然科学版),2023,51(5):40−46. doi: 10.13245/j.hust.229323

    WU Jiaqi,ZHANG Wenqi,CHEN Wei,et al. Image enhancement method of low illumination in coal mine based on improved CycleGAN[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition),2023,51(5):40−46. doi: 10.13245/j.hust.229323
    [16]
    张立亚,郝博南,孟庆勇,等. 基于HSV空间改进融合Retinex算法的井下图像增强方法[J]. 煤炭学报,2020,45(S1):532−540. doi: 10.13225/j.cnki.jccs.2020.0514

    ZHANG Liya,HAO Bonan,MENG Qingyong,et al. Method of image enhancement in coal mine based on improved re tex fusion algorithm in HSV space[J]. Journal of China Coal Society,2020,45(S1):532−540. doi: 10.13225/j.cnki.jccs.2020.0514
    [17]
    WEI C, WANG W, YANG W, et al. Deep Retinex decomposition for low-light enhancement[C] // Proceedings of the the British Machine Vision Conference. Newcastle, UK: Springer, 2018.
    [18]
    LIU R, MA L, ZHANG J, et al. Retinex-inspired unrolling with cooperation prior architecture search for low-light image enhancement[C] // Proceedings of the IEEE conference on computer vision and pattern recognition. Virtual: IEEE, 2021.
    [19]
    ZHANG X, GUO H. Research on an improved algorithm for image dehazing in underground coal mine[C] //Proceedings of the international conference on computer information science and artificial intelligence. Hulun Buir, China: IOP Publishing, 2020.
    [20]
    程 健,闫鹏鹏,郁华森,等. 基于有向线段误匹配剔除的煤矿巷道复杂场景图像拼接方法[J]. 煤炭科学技术,2022,50(9):179−191. doi: 10.13199/j.cnki.cst.2021-0219

    CHENG Jian,YAN Pengpeng,YU Huasen,et al. Image stitching method for the complicated scene of coalmine tunnel based on mismatched elimination with directed line segments[J]. Coal Science and Technology,2022,50(9):179−191. doi: 10.13199/j.cnki.cst.2021-0219
    [21]
    XU Z,YANG W,YOU K,et al. Vehicle autonomous localization in local area of coal mine tunnel based on vision sensors and ultrasonic sensors[J]. PLoS ONE,2017,12(1):1−31.
    [22]
    杨文娟,张旭辉,张 超,等. 基于三激光束标靶的煤矿井下长距离视觉定位方法[J]. 煤炭学报,2022,47(2):986−1001. doi: 10.13225/j.cnki.jccs.xr21.1762

    YANG Wenjuan,ZHANG Xuhui,ZHANG Chao,et al. Long distance vision localization method based on triple laser beams target in coal mine[J]. Journal of China Coal Society,2022,47(2):986−1001. doi: 10.13225/j.cnki.jccs.xr21.1762
    [23]
    陈先中,刘荣杰,张 森,等. 煤矿地下毫米波雷达点云成像与环境地图导航研究进展[J]. 煤炭学报,2020,45(6):2182−2192. doi: 10.13225/j.cnki.jccs.zn20.0316

    CHEN Xianzhong,LIU Rongjie,ZHANG Sen,et al. Development of millimeter wave radar imaging and SLAM in underground coal mine environment[J]. Journal of China Coal Society,2020,45(6):2182−2192. doi: 10.13225/j.cnki.jccs.zn20.0316
    [24]
    周李兵. 煤矿井下无轨胶轮车无人驾驶系统研究[J]. 工矿自动化,2022,48(6):36−48.

    ZHOU Libing. Research on unmanned driving system of underground trackless rubber-tyred vehicle in coal mine[J]. Journal of Mine Automation,2022,48(6):36−48.
    [25]
    DERPANIS K G. The harris corner detector[J]. York University,2004,2:1−2.
    [26]
    TRAJKOVIĆ M,HEDLEY M. Fast corner detection[J]. Image and vision computing,1998,16(2):75−87. doi: 10.1016/S0262-8856(97)00056-5
    [27]
    CALONDER M, LEPETIT V, STRECHA C, et al. Brief: Binary robust independent elementary features[C] //Computer Vision–ECCV 2010: 11th European Conference on Computer Vision, 2010: 778−792.
    [28]
    RUBLEE E, RABAUD V, KONOLIGE K, et al. ORB: An efficient alternative to SIFT or SURF[C] //2011 International conference on computer vision. IEEE, 2011: 2564−2571.
    [29]
    LOWE D G. Distinctive image features from scale-invariant key points[J]. International Journal of Computer Vision,2004,60(2):91−110. doi: 10.1023/B:VISI.0000029664.99615.94
    [30]
    BAY H,ESS A,TUYTELAARS T,et al. Speeded-up robust features (SURF)[J]. Computer vision and image understanding,2008,110(3):346−359. doi: 10.1016/j.cviu.2007.09.014
    [31]
    MOREL J M,YU G. ASIFT: a new framework for fully affine invariant image comparison[J]. SIAM Journal on Imaging Sciences,2009,2(2):438−469. doi: 10.1137/080732730
    [32]
    MIKOLAJCZYK K, SCHMID C. An affine invariant interest point detector[C] //Proceedings of the European Conference on Computer Vision. Copenhagen, Denmark: Springer, 2002.
    [33]
    MATAS J,CHUM O,URBAN M,et al. Robust wide-baseline stereo from maximally stable extremal regions[J]. Image and Vision Computing,2004,22(10):761−767. doi: 10.1016/j.imavis.2004.02.006
    [34]
    DUDA R O,HART P E. Use of the Hough transformation to detect lines and curves in pictures[J]. Communications of the ACM,1972,15(1):11−15. doi: 10.1145/361237.361242
    [35]
    MATAS J,GALAMBOS C,KITTLER J. Robust detection of lines using the progressive probabilistic hough transform[J]. Computer vision and image understanding,2000,78(1):119−137. doi: 10.1006/cviu.1999.0831
    [36]
    VON GIOI R G,JAKUBOWICZ J,MOREL J M,et al. LSD: A fast line segment detector with a false detection control[J]. IEEE transactions on pattern analysis and machine intelligence,2008,32(4):722−732.
    [37]
    AKINLAR C,TOPAL C. EDLines: A real-time line segment detector with a false detection control[J]. Pattern Recognition Letters,2011,32(13):1633−1642. doi: 10.1016/j.patrec.2011.06.001
    [38]
    GU G, KO B, GO S H, et al. Towards light-weight and real-time line segment detection[C] //Proceedings of the AAAI Conference on Artificial Intelligence. 2022, 36(1): 726−734.
    [39]
    DAI X,GONG H,WU S,et al. Fully convolutional line parsing[J]. Neurocomputing,2022,506:1−11. doi: 10.1016/j.neucom.2022.07.026
    [40]
    ZHOU Y, QI H, MA Y. End-to-end wireframe parsing[C] //Proceedings of the IEEE/CVF International Conference on Computer Vision. 2019: 962−971.
    [41]
    LIN Y, PINTEA S L, VAN GEMERT J C. Deep hough-transform line priors[C] //Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXII 16. Springer International Publishing, 2020: 323−340.
    [42]
    BLOESCH M, CZARNOWSKI J, CLARK R, et al. CodeSLAM—learning a compact, optimizable representation for dense visual SLAM[C] //Proceedings of the IEEE conference on computer vision and pattern recognition. 2018: 2560−2568.
    [43]
    LIU Y,GUO C,WANG Y. Object-aware data association for the semantically constrained visual SLAM[J]. Intelligent Service Robotics,2023,16(2):155−176. doi: 10.1007/s11370-023-00455-9
    [44]
    程 健,王东伟,杨凌凯,等. 一种改进的高斯混合模型煤矸石视频检测方法[J]. 中南大学学报(自然科学版),2018,49(1):118−123.

    CHENG Jian,WANG Dongwei,YANG Lingkai,et al. An improved gaussian mixture model for coal gangue video detection[J]. Journal of Central South University (Science ang Technology),2018,49(1):118−123.
    [45]
    HE K, GKIOXARI G, DOLLÁR P, et al. Mask r-cnn[C]//Proceedings of the IEEE international conference on computer vision. 2017: 2961−2969.
    [46]
    CAI Z,VASCONCELOS N. Cascade R-CNN: high quality object detection and instance segmentation[J]. IEEE transactions on pattern analysis and machine intelligence,2019,43(5):1483−1498.
    [47]
    WANG T, XIONG J, XU X, et al. SCNN: A general distribution based statistical convolutional neural network with application to video object detection[C]//Proceedings of the AAAI Conference on Artificial Intelligence. 2019, 33(1): 5321−5328.
    [48]
    FAN Q, ZHUO W, TANG C K, et al. Few-shot object detection with attention-RPN and multi-relation detector[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2020: 4013−4022.
    [49]
    ZHU X, SU W, LU L, et al. Deformable detr: Deformable transformers for end-to-end object detection[J]. arXiv preprint arXiv: 2010.04159, 2020.
    [50]
    FAN D P,JI G P,CHENG M M,et al. Concealed object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2021,44(10):6024−6042.
    [51]
    DI L, DAI J, JIA J, et al. ScribbleSup: scribble-supervised convolutional networks for semantic segmentation[C] //Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA: IEEE, 2016.
    [52]
    DAI J, HE K, SUN J. BoxSup: exploiting bounding boxes to supervise convolutional networks for semantic segmentation[C] //Proceedings of the IEEE International Conference on Computer Vision. Santiago, Chile: IEEE, 2015.
    [53]
    BEARMAN A, RUSSAKOVSKY O, FERRARI V, et al. What's the Point: Semantic Segmentation with Point Supervision[C]//Proceedings of the European Conference on Computer Vision. Amsterdam, Netherlands: Springer, 2016.
    [54]
    HONG Y, PAN H, SUN W, et al. Representation separation for semantic segmentation with vision transformers[J]. arXiv preprint arXiv: 2212.13764, 2022.
    [55]
    温廷新,王贵通,孔祥博,等. 基于迁移学习与残差网络的矿工不安全行为识别[J]. 中国安全科学学报,2020,30(3):41−46. doi: 10.16265/j.cnki.issn1003-3033.2020.03.007

    WEN Tingxin,WANG Guitong,KONG Xiangbo,et al. Identification of miners’unsafe behaviors based on transfer learning and residual network[J]. China Safety Science Juurnal,2020,30(3):41−46. doi: 10.16265/j.cnki.issn1003-3033.2020.03.007
    [56]
    鞠春雷,聂方超,刘文岗,等. 基于长短期记忆网络的矿工不安全行为研究[J]. 煤矿安全,2020,51(9):260−264. doi: 10.13347/j.cnki.mkaq.2020.09.054

    JU Chunlei,NIE Fangchao,LIU Wengang,et al. Research on miner’s unsafe behavior based on long and short term memory[J]. Safety in Coal Mines,2020,51(9):260−264. doi: 10.13347/j.cnki.mkaq.2020.09.054
    [57]
    CHEN P,GAN C,SHEN G,et al. Relation attention for temporal action localization[J]. IEEE Transactions on Multimedia,2019,22(10):2723−2733.
    [58]
    程 健,陈 亮,王 凯,等. 一种多特征融合的复杂场景动态目标跟踪算法[J]. 中国矿业大学学报,2021,50(5):1002−1010. doi: 10.13247/j.cnki.jcumt.001333

    CHENG Jian,CHEN Liang,WANG Kai,et al. Multi-feature fusion dynamic target tracking algorithm for complex scenes[J]. Journal of China University of Mining & Technology,2021,50(5):1002−1010. doi: 10.13247/j.cnki.jcumt.001333
    [59]
    LIU X,WANG Q,HU Y,et al. End-to-end temporal action detection with transformer[J]. IEEE Transactions on Image Processing,2022,31:5427−5441. doi: 10.1109/TIP.2022.3195321
    [60]
    ORDONEZ V, KULKARNI G, BERG T. Im2text: Describing images using 1 million captioned photographs[C] //Proceedings of the Conference on Neural Information Processing Systems. Granada, Spain: Curran Associates Inc, 2011.
    [61]
    HAYS J, EFROS A A. IM2GPS: estimating geographic information from a single image[C] //Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Anchorage, USA: IEEE, 2008.
    [62]
    程 健,叶 亮,郭一楠,等. 采空区地裂缝混合域注意力变形卷积网络检测方法[J]. 煤炭学报,2020,45(S2):993−1002. doi: 10.13225/j.cnki.jccs.2020.0164

    CHENG Jian,YE Liang,GUO Yinan,et al. An aerial image detection method of ground crack in goaf based on deformable convolutional network with hybrid domain attention[J]. Journal of China Coal Society,2020,45(S2):993−1002. doi: 10.13225/j.cnki.jccs.2020.0164
    [63]
    GALLAGHER L, KUMAR V R, YOGAMANI S, et al. A hybrid sparse-dense monocular slam system for autonomous driving[C] //Proceedings of the european conference on mobile robots. Bonn, Germany: IEEE, 2021.
    [64]
    李首滨,李 森,张守祥,等. 综采工作面智能感知与智能控制关键技术与应用[J]. 煤炭科学技术,2021,49(4):28−39. doi: 10.13199/j.cnki.cst.2021.04.004

    LI Shoubin,LI Sen,ZHANG Shouxiang,et al. Key technology and application of intelligent perception and intelligent control in fully mechanized mining face[J]. Coal Science and Technology,2021,49(4):28−39. doi: 10.13199/j.cnki.cst.2021.04.004
    [65]
    GAO X, ZHANG T. Introduction to visual SLAM: from theory to practice[M]. Springer, 2021.
    [66]
    HUANG K, LI J, LIU Y, et al. A survey on feature point extraction techniques[C] //Proceedings of the International SoC Design Conference. Jeju Island, Korea: IEEE, 2021.
    [67]
    龙霄潇,程新景,朱 昊,等. 三维视觉前沿进展[J]. 中国图象图形学报,2021,26(6):1389−1428.

    LONG Xiaoxiao,CHENG Xinjing,ZHU Hao,et al. Recent progress in 3D vision[J]. Journal of Image and Graphics,2021,26(6):1389−1428.
    [68]
    MORAN D, KOSLOWSKY H, KASTEN Y, et al. Deep Permutation Equivariant Structure from Motion[C] //Proceedings of the IEEE International Conference on Computer Vision. Virtual: IEEE, 2021.
    [69]
    SCHONBERGER J L, FRAHM J M. Structure-from-motion revisited[C] //Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA: IEEE, 2016.
    [70]
    KLEIN G, MURRAY D. Parallel tracking and mapping for small AR workspaces[C] //Proceedings of the IEEE and ACM International Symposium on Mixed and Augmented Reality. Nara, Japan: IEEE, 2007.
    [71]
    CAMPOS C,ELVIRA R,RODRIGUEZ J J G,et al. Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam[J]. IEEE Transactions on Robotics,2021,37(6):1874−1890. doi: 10.1109/TRO.2021.3075644
    [72]
    EENGEL J, SCHOPS T, CREMERS D. LSD-SLAM: Large-scale direct monocular SLAM[C] //Proceedings of the European Conference on Computer Vision. Zurich, Switzerland: Springer, 2014.
    [73]
    LI M,MOURIKIS A I. High-precision, consistent EKF-based visual-inertial odometry[J]. The International Journal of Robotics Research,2013,32(6):690−711. doi: 10.1177/0278364913481251
    [74]
    LIN J, ZHANG F. R3LIVE++: a robust, real-time, radiance reconstruction package with a tightly-coupled lidar-inertial-visual state estimator[EB/OL]. (2023-02-14) https://arxiv.org/abs/2109.07982.
    [75]
    李猛钢,胡而已,朱 华. 煤矿移动机器人LiDAR/IMU紧耦合SLAM方法[J]. 工矿自动化,2022,48(12):68−78. doi: 10.13272/j.issn.1671-251x.2022100061

    LI Menggang,HU Eryi,ZHU Hua. LiDAR/IMU tightly-coupled SLAM method for coal mine robot[J]. Journal of Mine Automation,2022,48(12):68−78. doi: 10.13272/j.issn.1671-251x.2022100061
    [76]
    YU C, LIU Z, LIU X J, et al. DS-SLAM: A semantic visual SLAM towards dynamic environments[C] //Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. Madrid, Spain: IEEE, 2018.
    [77]
    VON STUMBERG L,CREMERS D. DM-VIO: Delayed marginalization visual-inertial odometry[J]. IEEE Robotics and Automation Letters,2022,7(2):1408−1415. doi: 10.1109/LRA.2021.3140129
    [78]
    PATWARDHAN A,MURAI R,DAVISON A J. Distributing collaborative multi-robot planning with gaussian belief propagation[J]. IEEE Robotics and Automation Letters,2022,8:552−559.
    [79]
    TU C, TAKEULAI E, MIYAJIMA C, et al. Continuous point cloud data compression using SLAM based prediction[C] //Proceedings of the IEEE Intelligent Vehicles Symposium. Los Angeles, USA: IEEE, 2017.
    [80]
    KRUL S,PANTOS C,FRANGULEA M,et al. Visual SLAM for indoor livestock and farming using a small drone with a monocular camera: A feasibility study[J]. Drones,2021,5(2):41. doi: 10.3390/drones5020041
    [81]
    ZHANG S,ZHENG L,TAO W. Survey and evaluation of RGB-D SLAM[J]. IEEE Access,2021,9:21367−21387. doi: 10.1109/ACCESS.2021.3053188
    [82]
    ROSINOL A, LEONARD J J, CARLONE L. NeRF-SLAM: real-time dense monocular slam with neural radiance fields[EB/OL]. (2023-02-14) https://arxiv.org/abs/2210.13641.
    [83]
    XUE G,WEI J,LI R,et al. LeGO-LOAM-SC: an improved simultaneous localization and mapping method fusing LeGO-LOAM and scan context for underground coal mine[J]. Sensors,2022,22(2):520−525. doi: 10.3390/s22020520
    [84]
    PAN W,ZHENG J,WANG L,et al. A Future Perspective on In-Sensor Computing[J]. Engineering,2022,14(7):19−21.
    [85]
    HINTON G,VINYALS O,DEAN J. Distilling the knowledge in a neural network[J]. Computer Science,2015,14(7):38−39.
    [86]
    YIM J, JOO D, BAE J, et al. A gift from knowledge distillation: Fast optimization, network minimization and transfer learning[C] // Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA: IEEE, 2017.
    [87]
    NAGEL M, BAALEN M, BLANKEVOORT T, et al. Data-free quantization through weight equalization and bias correction[C]//Proceedings of the IEEE International Conference on Computer Vision. Seoul, Korea: IEEE, 2019.
    [88]
    BROGI A,FORTI S,GUERRERO C,et al. How to place your apps in the fog: state of the art and open challenges[J]. Software:Practice and Experience,2019,1(1):1−8.
    [89]
    ZHANG J, LI W, OGUNBONA P. Joint geometrical and statistical alignment for visual domain adaptation[C] //Proceedings of the IEEE conference on computer vision and pattern recognition. Honolulu, USA: IEEE, 2017.
    [90]
    张立亚. 矿山智能视频分析与预警系统研究[J]. 工矿自动化,2017,43(11):16−20.

    ZHANG Liya. Research on intelligent video analysis and early warning system for mine[J]. Industry and Mine Automation,2017,43(11):16−20.
    [91]
    CHENG J, YE L, GUO Y, et al. Ground crack recognition based on fully convolutional network with multi-scale input[J]. IEEE Access, 2020, 8(1): 53034−53048.
    [92]
    程德强,钱建生,郭星歌,等. 煤矿安全生产视频AI识别关键技术研究综述[J]. 煤炭科学技术,2023,51(2):349−365. doi: 10.13199/j.cnki.cst.2022-0359

    CHENG Deqiang,QIAN Jiansheng,GUO Xingge,et al. Review on key technologies of AI recognition for videos in coal mine[J]. Coal Science and Technology,2023,51(2):349−365. doi: 10.13199/j.cnki.cst.2022-0359
    [93]
    原志明. 上湾煤矿安全智能视频系统设计及应用[J]. 煤炭科学技术, 2017, 45(2): 114-117.

    YUAN Zhiming. Application and design of safe intelligent video system in Shangwan Mine[J]. 2017, 45(2): 114-117.
    [94]
    程 健,王瑞彬,郁华森,等. 矿井巷道复杂场景灭点检测方法[J]. 工矿自动化,2021,47(6):25−31. doi: 10.13272/j.issn.1671-251x.2021040097

    CHENG Jian,WANG Ruibin,YU Huasen,et al. Vanishing point de-tection method in complex environment of mine roadway[J]. Industry and Mine Automation,2021,47(6):25−31. doi: 10.13272/j.issn.1671-251x.2021040097
    [95]
    王国法,刘 峰,庞义辉,等. 煤矿智能化−煤炭工业高质量发展的核心技术支撑[J]. 煤炭学报,2019,44(2):349−357. doi: 10.13225/j.cnki.jccs.2018.2041

    WANG Guofa,LIU Feng,PANG Yihui,et al. Coal mine intellectualization: The core technology of high quality development[J]. Journal of China Coal Society,2019,44(2):349−357. doi: 10.13225/j.cnki.jccs.2018.2041
    [96]
    彭玉敬,刘传安,郜 彤,等. 煤矿企业安全风险防控与预警系统研究[J]. 煤炭技术,2019,38(3):184−187. doi: 10.13301/j.cnki.ct.2019.03.062

    PENG Yujing,LIU Chuanan,GAO Tong,et al. Study on safety risk prevention and early warning system of coal mine enterprise[J]. Coal Technology,2019,38(3):184−187. doi: 10.13301/j.cnki.ct.2019.03.062
    [97]
    徐江陵. 基于物联网的智能化煤矿安全监控系统研究[J]. 煤炭技术,2018,37(8):229−231. doi: 10.13301/j.cnki.ct.2018.08.087

    XU Jiangling. Research on intelligent coal mine safety monitoring system based on internet of things[J]. Coal Technology,2018,37(8):229−231. doi: 10.13301/j.cnki.ct.2018.08.087
    [98]
    王道元,王 俊,孟志斌,等. 煤矿安全风险智能分级管控与信息预警系统[J]. 煤炭科学技术,2021,49(10):136−144. doi: 10.13199/j.cnki.cst.2021.10.019

    WANG Daoyuan,WANG Jun,MENG Zhibin,et al. Intelligent hierarchical management & control and information pre-warning system of coal mine safety risk[J]. Coal Science and Technology,2021,49(10):136−144. doi: 10.13199/j.cnki.cst.2021.10.019
    [99]
    程 健. 煤矿巷道机器人的管线视觉辅助定位与导航方法研究[J]. 煤炭科学技术,2020,48(7):226−232.

    CHENG Jian. Study on pipeline vision-aided positioning and navigation method for coal mine tunnel robot[J]. Coal Science and Technology,2020,48(7):226−232.
    [100]
    TRIGGS B, MCLAUCHAN P E, HARTLEY R I, et al. Bundle adjustment-a modern synthesis. vision algorithms: theory and practice[J]. Springer Berlin Heidelberg, 2000: 298−372.
    [101]
    张旭辉. 数字孪生驱动的悬臂式掘进机虚拟操控技术[J]. 计算机集成制造系统, 2021, 27(6): 1617−1627.

    ZHANG Xuhui. Digital twin-driven virtual control technology of cantilever roadheader[J]. 2021, 27(6): 1617−1627.
    [102]
    毛善君,鲁守明,李存禄,等. 基于精确大地坐标的煤矿透明化智能综采工作面自适应割煤关键技术研究及系统应用[J]. 煤炭学报,2022,47(1):515−526.

    MAO Shanjun,LU Shouming,LI Cunlu,et al. Key technologies and system of adaptive coal cutting in transparent intelligent fully mechanized coal mining face based on precise geodetic coordinates[J]. Journal of China Coal Society,2022,47(1):515−526.
    [103]
    拓宏平,高锦磊,杨一特. 综采工作面视频拼接关键技术[J]. 智能矿山,2022,11:67−69.

    TUO Hongping,GAO Jinlei,YANG Yite. Key technology of video splicing in fully mechanized mining face[J]. Journal of Intelligent Mine,2022,11:67−69.
    [104]
    徐华龙. 基于三维视频融合的矿井实时监测技术[J]. 煤矿安全,2021,52(1):136−139. doi: 10.13347/j.cnki.mkaq.2021.01.025

    XU Hualong. Mine real-time monitoring technology based on 3D video fusion[J]. Safety in Coal Mines,2021,52(1):136−139. doi: 10.13347/j.cnki.mkaq.2021.01.025
  • Related Articles

    [1]TAN Zhanglu, WANG Meijun, YE Zihan. Methodological system and implementation framework of data governance for intelligent coal mines[J]. COAL SCIENCE AND TECHNOLOGY, 2025, 53(1): 284-295. DOI: 10.12438/cst.2024-1794
    [2]WEN Liang, WU Wenzhen, LI Qiwei. Study on intelligent coal mine construction scheme of F5G architecture[J]. COAL SCIENCE AND TECHNOLOGY, 2022, 50(11): 176-182.
    [3]HU Yahui, ZHAO Guorui, WU Qunying. Research on 5G key technologies in intelligent coal mining[J]. COAL SCIENCE AND TECHNOLOGY, 2022, 50(2): 223-230.
    [4]WANG Guofa. New technological progress of coal mine intelligence and its problems[J]. COAL SCIENCE AND TECHNOLOGY, 2022, 50(1): 1-27.
    [5]JIANG Weiliang, WANG Xingru, LIU Bing, XI Gungen. Study on key technology of coal mine intelligent continuous transportation[J]. COAL SCIENCE AND TECHNOLOGY, 2020, 48(7).
    [6]WANG Guofa, REN Huaiwei, PANG Yihui, CAO Xiangang, ZHAO Guorui, CHEN Hongyue, DU Yibo, MAO Shanjun, XU Yajun, REN Shihua, CHENG Jianyuan, LIU Siping, FAN Jingdao, WU Qunying, MENG Xiangjun, YANG Junzhe, YU Beijian, XUAN Hongbin, SUN Xikui, ZHANG Dianzhen, WANG Haibo. Research and engineering progress of intelligent coal mine technical system in early stages[J]. COAL SCIENCE AND TECHNOLOGY, 2020, 48(7).
    [7]WANG Guofa, PANG Yihui, LIU Feng, LIU Jianzhong, FAN Jingdao, WU Qunying, MENG Xiangjun, XU Yajun, REN Huaiwei, DU Yibo, ZHAO Guorui, LI Mingzhong, MA Ying, ZHANG Jinhu. Specification and classification grading evaluation index system for intelligent coal mine[J]. COAL SCIENCE AND TECHNOLOGY, 2020, 48(3).
    [8]WANG Guofa, DU Yibo. Coal mine intelligent standard system framework and construction ideas[J]. COAL SCIENCE AND TECHNOLOGY, 2020, 48(1).
    [9]ZHANG Kexue, LI Shoubin, HE Manchao, NING Yu, ZHANG Liang, HUANG Zenghua. Study on key technologies of intelligent unmanned coalmining series Ⅰ:study on diagonal adjustment control technology ofintelligent fully-mechanized coal mining face[J]. COAL SCIENCE AND TECHNOLOGY, 2018, (1).
    [10]SUN Ji-ping. Requirement and Key Technology on Mine Informationalization and Intelligent Technology[J]. COAL SCIENCE AND TECHNOLOGY, 2014, (9).

Catalog

    Article views (382) PDF downloads (145) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return