LI Fuqin,XUE Tianli,GAO Shanshan,et al. Experimental study on bipolar membrane electrodialysis of high-salt mine water concentrate[J]. Coal Science and Technology,2023,51(11):248−254
. DOI: 10.12438/cst.2023-0009Citation: |
LI Fuqin,XUE Tianli,GAO Shanshan,et al. Experimental study on bipolar membrane electrodialysis of high-salt mine water concentrate[J]. Coal Science and Technology,2023,51(11):248−254 . DOI: 10.12438/cst.2023-0009 |
Based on the zero discharge and resource utilization of high-salt mine water, BP-A-C-BP three-chamber configuration bipolar membrane electrodialysis is used to treat high-salt mine water concentrate. Taking the high-salt mine water of a mine in Hebei as the raw water, after pretreatment + RO + decarburization + concentrated water RO + ED concentration, the final concentrate TDS reaches 93 040 mg/L, and the bipolar membrane electrodialysis test is carried out. The effects of current density, circulating flow rate and electrolyte concentration in the polar chamber on the acid and alkali production by bipolar membrane electrodialysis are investigated.The results show that in the current density range of 10-40 mA/cm2, with the increase of current density, the operating voltage increases, the current efficiency and capacity decrease gradually, and the energy consumption increases gradually. The optimal current density is 30 mA/cm2. When the circulating flow rate is in the range of 10-30 L/h, with the increase of the circulating flow rate, the current efficiency and production capacity increase, and the energy consumption decreases. Further increasing the circulating flow rate to 40 L/h will increase the energy consumption and reduce the production capacity. The optimal circulating flow rate is 30 L/h. The electrolyte concentration in the polar chamber should not be too low or too high, which is easy to increase energy consumption. The hydrolysis effect of bipolar membrane electrodialysis is the best when the concentration is moderate, and the optimal electrolyte concentration is 2%. The initial salt chamber concentrate of 4 L, the acid chamber and the alkali chamber are respectively 1.5 L deionized water and 2 L of 2% sodium sulfate in polar chamber. The current density is 30 mA/cm2, the circulating flow rate in polar chamber is 60 L/h, and the circulating flow rate in other chambers is 30 L/h. After 120 min of operation, the acid and alkali concentrations are 6.91% and 5.38%, respectively, which reach the expected target of the experiment. The current efficiency, productivity and energy consumption are 74.21%, 1.49 kg/(m2·h) and 1.66 kWh/kg, respectively. The acid and alkali solution produced by bipolar membrane electrodialysis process can be used in the zero discharge process of high-salt mine water and the downstream industrial chain of coal to realize the non-phase change resource of concentrated liquid. It avoids the problem of miscellaneous salt difficult to deal with, and also improves the economic value of wastewater.
[1] |
王双明. 对我国煤炭主体能源地位与绿色开采的思考[J]. 中国煤炭,2020,46(2):11−16.
WANG Shuangming. Thoughts about the main energy status of coal and green mining in China[J]. China Coal,2020,46(2):11−16.
|
[2] |
顾大钊,李井峰,曹志国,等. 我国煤矿矿井水保护利用发展战略与工程科技[J]. 煤炭学报,2021,46(10):3079−3089. doi: 10.13225/j.cnki.jccs.2021.0917
GU Dazhao,LI Jingfeng,CAO Zhiguo,et al. Technology and engineering development strategy of water protection and utilization of coal mine in China[J]. Journal of China Coal Society,2021,46(10):3079−3089. doi: 10.13225/j.cnki.jccs.2021.0917
|
[3] |
FAN L,MA L,YU Y,et al. Water-conserving mining influencing factors identification and weight determination in northwest China[J]. International Journal of Coal Science & Technology,2019,6(1):95−101.
|
[4] |
蒋斌斌,虎晓龙,郭 强,等. 灵新煤矿高矿化度矿井水井下分级处理技术研究[J]. 煤炭工程,2018,50(8):83−85.
JIANG Binbin,HU Xiaolong,GUO Qiang,et al. Research on underground classification treatment technology of highly mineralized mine water in Lingxing Coal Mine[J]. Coal Engineering,2018,50(8):83−85.
|
[5] |
郭 强,宋喜东,虎晓龙,等. 高矿化度矿井水井下深度处理与浓盐水封存技术研究[J]. 煤炭工程,2020,52(12):16−19.
GUO Qiang,SONG Xidong,HU Xiaolong,et al. Treatment of high salinity mine water and storage of concentrated brine[J]. Coal Engineering,2020,52(12):16−19.
|
[6] |
李福勤,赵桂峰,朱云浩,等. 高矿化度矿井水零排放工艺研究[J]. 煤炭科学技术,2018,46(9):81−86. doi: 10.13199/j.cnki.cst.2018.09.013
LI Fuqin,ZHAO Guifeng,ZHU Yunhao,et al. Research on zero discharge process of highly-mineralized mine water[J]. Coal Science and Technology,2018,46(9):81−86. doi: 10.13199/j.cnki.cst.2018.09.013
|
[7] |
方惠明,戚 凯,李向东,等. 西部地区高矿化度矿井水处理技术及资源化利用[J]. 中国煤炭地质,2020,32(12):68−71. doi: 10.3969/j.issn.1674-1803.2020.12.12
FANG Huiming,QI Kai,LI Xiangdong,et al. Treatment technology and resource utilization of mine water with high salinity in western China[J]. Coal Geology of China,2020,32(12):68−71. doi: 10.3969/j.issn.1674-1803.2020.12.12
|
[8] |
葛光荣,吴一平,张 全. 高矿化度矿井水纳滤膜适度脱盐技术研究[J]. 煤炭科学技术,2021,49(3):208−214. doi: 10.13199/j.cnki.cst.2021.03.029
GE Guangrong,WU Yiping,ZHANG Quan. Research on technology and process for moderate desalination of highsalinity mine water by nanofiltration[J]. Coal Science and Technology,2021,49(3):208−214. doi: 10.13199/j.cnki.cst.2021.03.029
|
[9] |
倪深海, 彭岳津, 王亨力, 等. 我国矿井水资源利用管理对策研究[J]. 煤炭加工与综合利用, 2020, (4): 75−79.
NI Shenhai, PENG Yuejin, WANG Hengli, et al. Study on countermeasures for utilization and management of mine water resources in China[J]. Coal Processing & Comprehensive Utilization, 2020, (4): 75−79.
|
[10] |
顾大钊,李 庭,李井峰,等. 我国煤矿矿井水处理技术现状与展望[J]. 煤炭科学技术,2021,49(1):11−18.
GU Dazhao,LI Ting,LI Jingfeng,et al. Current status and prospects of coal mine water treatment technology in China[J]. Coal Science and Technology,2021,49(1):11−18.
|
[11] |
国家市场监督管理总局,中国国家标准化管理委员会.GB/T 37758-2019,高矿化度矿井水处理与回用技术导则[S].北京:中国标准出版社, 2019.
|
[12] |
靳德武,葛光荣,张 全,等. 高矿化度矿井水节能脱盐新技术[J]. 煤炭科学技术,2018,46(9):12−18.
JIN Dewu,GE Guangrong,ZHANG Quan,et al. New energy-saving desalination technology of highly-mineralized mine water[J]. Coal Science and Technology,2018,46(9):12−18.
|
[13] |
CHEN F, ZHANG Z, ZENG F, et al. Pilot-scale treatment of hypersaline coal chemical wastewater with zero liquid discharge[J]. Desalination, 2021, 518.
|
[14] |
毛维东,周如禄,郭中权. 煤矿矿井水零排放处理技术与应用[J]. 煤炭科学技术,2017,45(11):205−210. doi: 10.13199/j.cnki.cst.2017.11.034
MAO Weidong,ZHOU Rulu,GUO Zhongquan. Zero liquid discharge treatment technology and application for coal mine drainage water[J]. Coal Science and Technology,2017,45(11):205−210. doi: 10.13199/j.cnki.cst.2017.11.034
|
[15] |
陈 哲. 大海则煤矿高盐矿井水综合处理关键技术研究与应用[J]. 煤炭工程,2022,54(1):29−33.
CHEN Zhe. Key technology for comprehensive treatment of high-salt mine water[J]. Coal Engineering,2022,54(1):29−33.
|
[16] |
杨浩然,王炳煌,郑煜铭,等. 双极膜电渗析处理工业高盐废水的研究现状[J]. 膜科学与技术,2022,42(4):148−156. doi: 10.16159/j.cnki.issn1007-8924.2022.04.018
YANG Haoran,WANG Binghuang,ZHENG Yuming,et al. Review on the research status of bipolar membrance electrodialysis toward the treatment of hyperhaline industrial wastewater[J]. Membrane Science and Technology(Chinese),2022,42(4):148−156. doi: 10.16159/j.cnki.issn1007-8924.2022.04.018
|
[17] |
夏子君. 电渗析技术在零排放中的应用[J]. 膜科学与技术,2021,41(4):129−137. doi: 10.16159/j.cnki.issn1007-8924.2021.04.017
XIA Zijun. Electrodialysis technology in zero liquid discharge[J]. Membrane Science and Technology(Chinese),2021,41(4):129−137. doi: 10.16159/j.cnki.issn1007-8924.2021.04.017
|
[18] |
孙文文,唐元晖,张春晖,等. 双极膜电渗析技术的研究进展[J]. 工业水处理,2021,41(5):36−41. doi: 10.11894/iwt.2020-0501
SUN Wenwen,TANG Yuanhui,ZHANG Chunhui,et al. Research progress of bipolar membrane electrodialysis technology[J]. Industrial Water Treatment,2021,41(5):36−41. doi: 10.11894/iwt.2020-0501
|
[19] |
孙 哲,徐春艳,韩洪军,等. 双极膜电渗析煤化工浓盐水资源化利用试验研究[J]. 给水排水,2020,56(S2):225−230. doi: 10.13789/j.cnki.wwe1964.2020.S2.034
SUN Zhe,XU Chunyan,HAN Hongjun,et al. Study on the utilization of coal brine by bipolar membrane electrodialysis[J]. Water & Wastewater Engineering,2020,56(S2):225−230. doi: 10.13789/j.cnki.wwe1964.2020.S2.034
|
[20] |
汤颖岚,张玉凤,刘 孟. 双极膜电渗析资源化Na2SO4制备酸碱的试验研究[J]. 中国资源综合利用,2021,39(7):1−5. doi: 10.3969/j.issn.1008-9500.2021.07.001
TANG Yinglan,ZHANG Yufeng,LIU Meng. Experimental study on preparation of acid-base by bipolar membrane electrodialysis using Na2SO4 as resource[J]. China Resources Comprehensive Utilization,2021,39(7):1−5. doi: 10.3969/j.issn.1008-9500.2021.07.001
|
[21] |
黄灏宇,叶春松. 双极膜电渗析技术在高盐废水处理中的应用[J]. 水处理技术,2020,46(6):4−8. doi: 10.16796/j.cnki.1000-3770.2020.06.002
HUANG Haoyu,YE Chunsong. Application of bipolar membrane electrodialysis in the treatment of high-salinity wastewater[J]. Technology of Water Treatment,2020,46(6):4−8. doi: 10.16796/j.cnki.1000-3770.2020.06.002
|