WANG Xufeng,NIU Zhijun,ZHANG Lei,et al. Research progress and prospects of ultrasonic vibration in coal rock fracturing[J]. Coal Science and Technology,2024,52(1):232−243
. DOI: 10.12438/cst.2022-2121Citation: |
WANG Xufeng,NIU Zhijun,ZHANG Lei,et al. Research progress and prospects of ultrasonic vibration in coal rock fracturing[J]. Coal Science and Technology,2024,52(1):232−243 . DOI: 10.12438/cst.2022-2121 |
In order to promote the technological development of ultrasonic vibration induced cracking of coal and rock masses, improving the efficiency of coalbed methane production and hard rock excavation in mines, it reviews the development history of ultrasonic technology, summarizing the application status and research progress of ultrasonic vibration in fracturing coal and rock mass, and the key obstructive technology problems and development trends of ultrasonic vibration in the field of coal and rock fracturing are clarified. ① The technical problems of traditional technologies in the fields of coal seam methane production and hard rock excavation in mines is summarized, introducing unique advantages and application fields of ultrasonic technology, besides the development stages and corresponding performances of ultrasonic generator and ultrasonic transducer are described; ② The equipment and process of ultrasonic vibration to promote coalbed methane desorption and permeability increase are induced, analyzing the current situation of promoting permeability increase of coalbed methane by ultrasonic vibration, and the mechanism of pressure reduction, acceleration, potential energy and kinetic energy increase of coalbed methane under ultrasonic cavitation effect, mechanical vibration effect and thermal effect to promote its desorption and permeability increase is expounded; ③ The equipment and process of ultrasonic vibration rock fragmentation are generalized, describing the progress of ultrasonic vibration crushing of hard rock, and it reveals the internal mechanism of hard rock breaking caused by mechanical vibration effect and thermal effect of ultrasonic vibration, such as fatigue damage, subcritical propagation of microcracks, uneven thermal expansion or mineral phase transformation of mineral particles, and deterioration of rock physical and mechanical properties; ④ In view of limitations of ultrasonic generator, transducer and ultrasonic vibration in coal and rock mass fracturing in mines, four suggestions are put forward for the research focus on the efficient application of ultrasonic vibration induced fracturing of coal and rock masses in the field in the future: research and development of high-performance explosion-proof ultrasonic generator and transducer, in-depth analysis of the mechanism of increasing permeability by ultrasonic vibration and design of pipeline technology framework, development and test of multi-function and multi-field coupling indoor ultrasonic vibration cracking coal and rock mass equipment, research and application of anti-interference ultrasonic vibration equipment in underground mines.
[1] |
秦 勇,邱爱慈,张永民. 高聚能重复强脉冲波煤储层增渗新技术试验与探索[J]. 煤炭科学技术,2014,42(6):1−7, 70. doi: 10.13199/j.cnki.cst.2014.06.001
QIN Yong,QIU Aici,ZHANG Yongmin. Experiment and discovery on permeability improved technology of coal reservoir based on repeated strong pulse waves of high energy accumulation[J]. Coal Science and Technology,2014,42(6):1−7, 70. doi: 10.13199/j.cnki.cst.2014.06.001
|
[2] |
黄家根,汪海阁,纪国栋,等. 超声波高频旋冲钻井技术破岩机理研究[J]. 石油钻探技术,2018,46(4):23−29.
HUANG Jiagen,WANG Haige,JI Guodong,et al. The rock breaking mechanism of ultrasonic high frequency rotary – percussive drilling technology[J]. Petroleum Drilling Techniques,2018,46(4):23−29.
|
[3] |
MUKSUNOV T R,KUZMENKO I Y,SUHANOV D Y. Research of high power output ultrasonic generator operation features[J]. Jour-nal of Physics Conference Series,2019,1327(10):204−209.
|
[4] |
MULLAKAEV M S,ABRAMOV V O,ABRAMOVA A V. Development of ultrasonic equipment and technology for well stimulation and enhanced oil recovery[J]. Journal of Petroleum Science and Engineering,2015,125(12):201−208.
|
[5] |
何 建. 大功率超声焊接电源稳定性分析及研究[D]. 广州: 广东工业大学, 2021.
HE Jian. Stability analysis and research of hi-gh-power ultrasonicwelding power [D]. Guangzhou: Guangdong University of Technology, 2021.
|
[6] |
OKAWA H,NISHI K,KAWAMURA Y,et al. Utilization of ultrasonic atomization for dust control in underground mining[J]. Jpn. J. Appl. Phys,2017,56(7s1):10−17.
|
[7] |
宋 超,姜永东,王苏健,等. 超声波作用下煤体微观结构的试验研究[J]. 煤炭科学技术,2019,47(5):139−144.
SONG Chao,JIANG Yongdong,WANG Sujian,et al. Experimental study on micro-structure of coal by ultrasonic treatment[J]. Coal Science and Technology,2019,47(5):139−144.
|
[8] |
刘丽艳,刘芃宏,杨 洋,等. 超声频率和液位对空化场的影响[J]. 天津大学学报(自然科学与工程技术版),2016,49(8):802−808.
LIU Liyan,LIU Penghong,YANG Yang,et al. Effect of ultrasonic frequency and liquid level on the cavitation field[J]. Journal of Tianjin University(Science and Technology),2016,49(8):802−808.
|
[9] |
QIAN Ma,RAMIREZ A. An approach to assessing ultrasonic attenuation in molten magnesium alloys[J]. Journal of Applied Physics,2009,105(1):538−544.
|
[10] |
王 恺,孔令勇,刘稚红,等. 将超声波波能应用于悬浮物加速沉淀的可行性研究[J]. 给水排水,2013,49(S1):64−66.
WANG Kai,KONG Lingyong,LIU Zhihong,et al. Feasibility study of applying ultrasonic wave energy to accelerated sedimentation of suspended matter[J]. Water & Wastewater Engineering,2013,49(S1):64−66.
|
[11] |
GIRSHOVA E I,MIKITCHUK E P,BELONOVSKII A V,et al. An optoacoustic ultrasound generator based on a tamm plasmon and organic active layer structure[J]. Technical Physics Letters,2021,47(4):336−340. doi: 10.1134/S1063785021040076
|
[12] |
原艺博. 超声波发生器控制电路的研究[D]. 西安: 西安石油大学, 2019.
YUAN Yibo. Research on control circuit of ultrasound generator[D]. Xi’an: Xi’an Shiyou University, 2019.
|
[13] |
石 英. 超声波换能器性能检测系统的设计与实现[D]. 大连: 大连理工大学, 2008.
SHI Ying. The design and implementation of ultrasonic transducer detection system[D]. Dalian: Dalian University of Technology, 2008.
|
[14] |
许 龙,李伟东. 幂函数型环形聚能器径向振动的等效电路[J]. 声学学报,2019,44(5):826−833. doi: 10.15949/j.cnki.0371-0025.2019.05.003
XU Long,LI Weidong. The equivalent circuit of the annular plate concentrator with power function cross-section in radial vibration[J]. Acta Acustica,2019,44(5):826−833. doi: 10.15949/j.cnki.0371-0025.2019.05.003
|
[15] |
许 龙,范秀梅. 阶梯圆环压电超声换能器径向振动性能的理论研究[J]. 应用声学,2021,40(6):878−888. doi: 10.11684/j.issn.1000-310X.2021.06.010
XU Long,FAN Xiumei. Theoretical research on the radial vibration performance of the stepped circular piezoelectric ultrasonic transdu-cer[J]. Journal of Applied Acoustics,2021,40(6):878−888. doi: 10.11684/j.issn.1000-310X.2021.06.010
|
[16] |
刘保县,鲜学福,徐龙君,等. 地球物理场对煤吸附瓦斯特性的影响[J]. 重庆大学学报,2000,23(5):78−81.
LIU Baoxian,XIAN Xuefu,XU Longjun,et al. Study on adsorption characteristics of coal to gas in geophysical field[J]. Journal of Chongqing University,2000,23(5):78−81.
|
[17] |
易 俊. 声震法提高煤层气抽采率的机理及技术原理研究[D]. 重庆: 重庆大学, 2007.
YI Jun. A research on mechanism and technological principle of enhancing coalbed gas extraction rate by ultrasonic vibrating[D]. Chongqing: Chongqing University, 2007.
|
[18] |
姜永东,宋 超,王苏健,等. 超声波激励下煤层气解吸扩散特性的研究[J]. 煤炭科学技术,2020,48(3):174−179. doi: 10.13199/j.cnki.cst.2020.03.021
JIANG Yongdong,SONG Chao,WANG Sujian,et al. Study on desorption and diffusion characteristics of coalbed methane under ultrasonic excitation[J]. Coal Science and Technology,2020,48(3):174−179. doi: 10.13199/j.cnki.cst.2020.03.021
|
[19] |
姜永东,宋 晓,崔悦震,等. 声场作用下煤中甲烷解吸扩散的特性[J]. 煤炭学报,2015,40(3):623−628.
JIANG Yongdong,SONG Xiao,CUI Ruizhen,et al. Characteristics of methane desorption and diffusion on coal under acoustic wave[J]. Journal of China Coal Society,2015,40(3):623−628.
|
[20] |
鲜晓东,石为人. 基于声震法的煤层气特性测试系统[J]. 重庆大学学报,2008,31(6):667−671.
XIAN Xiaodong,SHI Weiren. An ultrasonic vibration-based test system for the study of coalbed gas[J]. Journal of Chongqing University,2008,31(6):667−671.
|
[21] |
肖晓春,丁 鑫,徐 军,等. 超声作用下煤岩细观损伤演化模型及增渗机理研究[J]. 天然气地球科学,2016,27(1):166−172.
XIAO Xiaochun,DING Xin,XU Jun,et al. Coal rock microscopic damage evolution model and permeability increase mechanism research under ultrasound[J]. Natural Gas Geoscience,2016,27(1):166−172.
|
[22] |
ZHANG Jie,LUO Wen,WAN Tingyu,et al. Experimental investigation of the effects of ult-rasonic stimulation on adsorption, desorption and seepage characteristics of shale gas[J]. Journal of Petroleum Science and Engineering,2021,200(1):418−426.
|
[23] |
李树刚,王瑞哲,林海飞,等. 超声波功率对煤体孔隙结构损伤及渗流特性影响实验研究[J]. 采矿与安全工程学报,2022,39(2):396−404. doi: 10.13545/j.cnki.jmse.2021.0285
LI Shugang,WANG Ruizhe,LIN Haifei,et al. Experimental study on the influence of ultrasonic power on coalpore structure damage and seepage characteristics[J]. Journal of Mining & Safety Engineering,2022,39(2):396−404. doi: 10.13545/j.cnki.jmse.2021.0285
|
[24] |
李树刚,王瑞哲,林海飞,等. 超声波功率对煤体损伤特性及能量演化规律的试验研究[J]. 煤炭科学技术,2023,51(1):283−294. doi: 10.13199/j.cnki.cst.2022-1596
LI Shugang,WANG Ruizhe,LIN Haifei,et al. Experimental study on damage characteristics and energy evolution of coal by ultrasonic power[J]. Coal Science and Technology,2023,51(1):283−294. doi: 10.13199/j.cnki.cst.2022-1596
|
[25] |
ZHANG Junwen,LI Yulin. Ultrasonic vibrations and coal permeability: Laboratory experimental investigations and numerical simulations[J]. International Journal of Mining Science and Technology,2017,27(2):221−228. doi: 10.1016/j.ijmst.2017.01.001
|
[26] |
林海飞,韩双泽,李树刚,等. 脉冲超声对煤的孔隙结构及瓦斯解吸特性影响的实验研究[J]. 采矿与安全工程学报,2022,39(12):1235−1245. doi: 10.13545/j.cnki.jmse.2022.0378
LIN Haifei,HAN Shuangze,LI Shugang,et al. Experimental study on the influence of pulsed ultrasound on pore structure and gas desorption characteristics[J]. Journal of Mining& Safety Engineering,2022,39(12):1235−1245. doi: 10.13545/j.cnki.jmse.2022.0378
|
[27] |
林海飞, 仇 悦, 韩双泽, 等. 脉冲超声波激励对煤的孔隙全尺度改造效应[J/OL]. 煤田地质与勘探: 1–11[2023-07-17]. http://kns.cnki.net/kcms/detail/61.1155.P.20230704.1832.006.html
LIN Haife, QIU Yue, HAN Shuangze, et al. Transformed effect of full-scale pore of coal under pulsed ultrasonic excitation[J/OL]. Coal Geology & Exploration: 1–11[2023-07-17]. http://kns.cnki.net/kcms/detail/61.1155.P.20230704.1832.006.html
|
[28] |
YANG Erhao,LIN Haifei,LI Shugang,et al. Characteristic strength and energy evolution law of coal treated by ultrasonic wave with different power under uniaxial compression[J]. Natural Resources Research,2022,31(2):913−928. doi: 10.1007/s11053-022-10015-0
|
[29] |
于国卿,翟 成,秦 雷,等. 超声波功率对煤体孔隙影响规律研究[J]. 中国矿业大学学报,2018,47(2):264−270,322. doi: 10.13247/j.cnki.jcumt.000835
YU Guoqing,ZHAI Cheng,QIN Lei,et al. Changes to coal pores by ultrasonic wave excitation of different powers[J]. Journal of China University of Mining & Technology,2018,47(2):264−270,322. doi: 10.13247/j.cnki.jcumt.000835
|
[30] |
SHI Qingmin,QIN Yong,LI Jiuqing,et al. Simulation of the crack development in coal without confining stress under ultrasonic wave treatment[J]. Fuel,2017,205(5):222−231.
|
[31] |
TANG Zongqing,ZHAI Cheng,ZOU Quanle,et al. Changes to coal pores and fracture development by ultrasonic wave excitation using nuclear magnetic resonance[J]. Fuel,2016,186(5):571−578.
|
[32] |
ZHAI Cheng,YU Guoqing,QIN Lei,et al. Effects of moisture content on fracturing and heating processes during ultrasonication[J]. Journal of Loss Prevention in the Process Industries,2018,55(6):243−252.
|
[33] |
SHI Qingmin,QIN Yong,ZHOU Binyang,et al. Porosity changes in bituminous and anthracite coal with ultrasonic treatment[J]. Fuel,2019,255(5):739−745.
|
[34] |
崔悦震. 声场作用下煤层气渗流特性的研究[D]. 重庆: 重庆大学, 2015.
CUI Yuezhen. Study of coal body under the action of seepage mechanism of acoustic wave[D]. Chongqing: Chongqing University, 2015.
|
[35] |
宋 超,王苏健,黄克军,等. 超声激励瓦斯抽采增效技术研究[J]. 陕西煤炭,2020,39(S1):100−104.
SONG Chao,WANG Sujian,HUANG Kejun,et al. Study on gas extraction synergy technology by ultrasonic excitation[J]. Shaanxi Coal,2020,39(S1):100−104.
|
[36] |
王大勋,刘 洪,韩 松,等. 深部岩石力学与深井钻井技术研究[J]. 钻采工艺,2006,29(3):6−10. doi: 10.3969/j.issn.1006-768X.2006.03.003
WANG Daxun,LIU Hong,HAN Song,et al. Research on deep rock mechanics and deep well drilling technology[J]. Drilling & Production Technology,2006,29(3):6−10. doi: 10.3969/j.issn.1006-768X.2006.03.003
|
[37] |
云 溪. 应用超声波破碎矿山岩石的可能性的介绍[J]. 探矿工程,1957,3(2):20−25.
YUN Xi. Introduction to the possibility of using ultrasonic wave to break mine rock[J]. Drilling Engineering,1957,3(2):20−25.
|
[38] |
WIERCIGROCH M,WOJEWODA J,KRIVTSOV A M. Dynamics of ultrasonic percussive drilling of hard rocks[J]. Journal of Sound & Vibration,2005,280(3):739−757.
|
[39] |
李 玮,闫 铁,张志超,等. 高频振动钻具冲击下岩石响应机理及破岩试验分析[J]. 石油钻探技术,2013,41(6):25−28.
LI Wei,YAN Tie,ZHANG Zhichao,et al. Rock response mechanism and rock breaking test analysis for impact of high frequency vibration drilling tool[J]. Petroleum Drilling Techniques,2013,41(6):25−28.
|
[40] |
李思琪,闫 铁,李 玮,等. 高频谐波振动冲击破岩机制及试验分析[J]. 中国石油大学学报(自然科学版),2015,39(4):85−91.
LI Siqi,YAN Tie,LI Wei,et al. Mechanism experimental study of rock breaking assisted with high frequency harmonic vibration and impaction[J]. Journal of China University of Petroleum(Edition of Natural Science),2015,39(4):85−91.
|
[41] |
田家林,杨 志,付传红,等. 高频微幅冲击振动作用下岩石破碎行为计算方法[J]. 吉林大学学报(地球科学版),2015,45(6):1808−1816. doi: 10.13278/j.cnki.jjuese.201506204
TIAN Jialin,YANG Zhi,FU Chuanhong,et al. Calculation method of rock-breaking behavior under impact vibration of high frequency and micro amplitude[J]. Journal of Jilin University(Earth Science Edition),2015,45(6):1808−1816. doi: 10.13278/j.cnki.jjuese.201506204
|
[42] |
尹崧宇. 超声波振动下花岗岩裂纹变化特性的研究[D]. 长春: 吉林大学, 2017.
YIN Songyu. Research on the characteristics of granite crack variation under research on the characteristics of granite crack variation under ultrasonic vibration[D]. Changchun: Jilin University, 2017.
|
[43] |
ZHAO Dajum,ZHANG Shulei,WANG Meiyan. Microcrack growth properties of granite under ultrasonic high-frequency excitation[J]. Advances in Civil Engineering,2019,2019(4):1−11.
|
[44] |
ZHAO Dajum,ZHANG Shulei,ZHAO Yan,et al. Experimental study on damage characteristics of granite under ultrasonic vibration load based on infrared thermography[J]. Environmental earth sciences,2019,78(14):450−461.
|
[45] |
ZHOU Yu,TANG Qiongqiong,ZHANG Shulei,et al. The mechanical properties of granite under ultrasonic vibration[J]. Advances in Civil Engineering,2019,2019:1−11.
|
[46] |
ZHAO Dajun,YUAN Peng. Research on the Influence Rule of Ultrasonic Vibration Time on Granite Damage[J]. Journal of mining science,2019,54(5):751−762.
|
[47] |
孙梓航. 超声波振动频率对花岗岩破碎规律影响的研究[D]. 长春: 吉林大学, 2017.
SUN Zihang. Study on the effect of ultrasonic vibration frequency on granite fracture law [D]. Changchun: Jilin University, 2017.
|
[48] |
ZHOU Yu,ZHAO Dajun,TANG Qiongqiong,et al. Experimental and numerical investigation of the fatigue behaviour and crack evolution mechanism of granite under ultra-high-frequency loading[J]. Royal Society Open Science,2020,7(4):91−100.
|
[49] |
ZHAO Daju,WU Jinfa,LI Zhengyang. Simulation and experimental research on ultrasonic vibration high temperature rock[J]. Journal of Petroleum Science and Engineering,2022,212(2):255−267.
|
[50] |
王旭锋, 王选琳, 田仲喜, 等. 一种利用超声波激励破碎岩石的实验装置及实验方法[P]. 中国: ZL201710204880.8, 2020–10–16.
|
[51] |
王旭锋, 亓祥巍, 张东升, 等. 一种可调频超声波共振凿岩机及使用方法[P]. 中国: ZL201410211376.7, 2016–05–04.
|
[52] |
王旭锋, 王选琳, 李梓宁, 等. 一种基于超声波共振的掘进机截割头及其掘进使用方法[P]. 中国: ZL201710950754.7, 2019–07–30.
|
[53] |
王选琳. 超声波激励下岩石裂隙扩展规律实验研究[D]. 徐州: 中国矿业大学, 2019.
WANG Xuanlin. Experimental study on rock fracture expansion law under ultrasonic excitation[D]. Xuzhou: China University of Mining and Technology, 2019.
|
[54] |
汪 洋. 超声波激励下岩石的物理力学特征试验研究[D]. 徐州: 中国矿业大学, 2017.
WANG Yang. Experimental study on physical and mechanical characteristics of rock under ultrasonic excitation[D]. Xuzhou: China University of Mining and Technology, 2017.
|
[55] |
田仲喜. 超声波激励岩石破碎影响因素实验研究[D]. 徐州: 中国矿业大学, 2018.
TIAN Zhongxi. Experimental study on factors affecting rock fragmentation by ultrasonic excitation [D]. Xuzhou: China University of Mining and Technology, 2018.
|
[56] |
文 杰. 超声波激励与机械冲击复合破岩机理研究[D]. 徐州: 中国矿业大学, 2019.
WEN Jie. Study on rock breaking mechanism coupled with ultrasound excitation and mechanical impact control[D]. Xuzhou: China University of Mining and Technology, 2019.
|
[57] |
WANG Xufeng,WANG Xuanlin,WANG Jiyao,et al. Feasibility study and prospects of rock fragmentation using ultrasonic vibration excitation[J]. Applied Sciences,2020,10(17):586−592.
|
[58] |
李晓辉. 超声波激励下岩石的振动效应实验研究[D]. 徐州: 中国矿业大学, 2019.
LI Xiaohui. Experimental study on the vibration effect of rock under ultrasonic excitation[D]. Xuzhou: China University of Mining and Technology, 2019.
|
[59] |
ZHANG Lei,WANG Xufeng,WANG Jiyao,et al. Mechanical characteristics and pore evolution of red sandstone under ultrasonic high-frequency vibration excitation[J]. AIP Advances,2021,11(5):202−206.
|
[60] |
ZHANG Pengfei,LU Shuangfang,LI Junqian,et al. Characterization of shale pore system: a case study of Paleogene Xin’uzui Formation in the Jianghan Basin, China[J]. Marine and Petroleum Geology,2016,79(1):321−334.
|