LI Qixian,XU Jiang,PENG Shoujian,et al. Review on the progress for physical simulation for gas reservoirs co-production in multi-pressure system[J]. Coal Science and Technology,2023,51(9):149−159
. DOI: 10.12438/cst.2022-1225Citation: |
LI Qixian,XU Jiang,PENG Shoujian,et al. Review on the progress for physical simulation for gas reservoirs co-production in multi-pressure system[J]. Coal Science and Technology,2023,51(9):149−159 . DOI: 10.12438/cst.2022-1225 |
The gas reservoirs co-production in multi-pressure system is one of the important measures to improve the development efficiency of the superposed gas-bearing systems. However, the co-production effect is not ideal due to the special reservoir forming background. The mechanism of co-production and high-efficient development of the multi-pressure system has become an key scientific problem, which restricts the efficient exploration and development of superposed gas-bearing systems. This paper focuses on the gas reservoirs co-production in multi-pressure system, and divides the physical simulation types of co-production into two separate fields: coalbed methane and non coalbed methane. It clarifies the current research status of gas reservoirs co-production in multi-pressure system from the aspects of device functions and characteristics, understanding of co-production, and existing problems. Firstly, the large-scale physical simulation test device can effectively eliminate or weaken the problems of homogeneous single-type reservoir samples, single monitoring data means and single stress loading form caused by paralleling multiple core grippers to build the physical simulation model. The development direction of the physical simulation for co-production in multi-pressure system should be to achieve true three-dimensional heterogeneous complex in-situ stress state of large-scale heterogeneous multi-type reservoir samples. The characteristics of fluid pressure transmission between adjacent reservoirs, the inter-layer crossflow, the multi-phase natural gas symbiosis should be considered. On this basis, the sensitivity of co-production of multi-pressure system to reservoir physical properties was deeply summarized. The differences in inter-layer pressure difference, permeability, effective stress, water saturation and other factors may induce the fluid interference and reservoir gas production damage, and optimizing co-production style may be a way to reduce the fluid interference and reservoir gas production damage. In totally, the next research should focus on exploring the influence of the coupling effect of low porosity and low permeability, gas water two-phase flow, multiphase gas symbiosis and coexistence of multiple types of reservoirs on the dynamic evolution law of reservoir-wellbore flow field induced by co-production fluid interference, clarifying the reservoir damage and its mechanism of different phase fluid intrusions on the reservoir, and revealing the coupling flow characteristics of inter-layer crossflow and wellbore pipe flow considering the fluid interference effect.
[1] |
郑力会,陶秀娟,魏攀峰,等. 多储层产量伤害物理模拟系统及其在煤系气合采中的应用[J]. 煤炭学报,2021,46(8):2501−2509.
ZHENG Lihui,TAO Xiujuan,WEI Panfeng,et al. Multi-reservoir production damage physical simulation system and its application in coal-measure gas production[J]. Journal of China Coal Society,2021,46(8):2501−2509.
|
[2] |
郭 晨,秦 勇,易同生,等. 煤层气合采地质研究进展述评[J]. 煤田地质与勘探,2022,50(3):42−57. doi: 10.12363/issn.1001-1986.21.10.0573
GUO Chen,QIN Yong,YI Tongsheng,et al. Review of the progress of geological research on coalbed methane co-production[J]. Coal Geology & Exploration,2022,50(3):42−57. doi: 10.12363/issn.1001-1986.21.10.0573
|
[3] |
张先敏,吴浩宇,冯其红,等. 多层合采煤层气井动态响应特征[J]. 中国石油大学学报(自然科学版),2020,44(6):88−96.
ZHANG Xianmin,WU Haoyu,FENG Qihong,et al. Dynamic characteristics of commingled coalbed methane production in wells with multi-layer coal seams[J]. Journal of China University of Petroleum (Edition of Natural Science),2020,44(6):88−96.
|
[4] |
秦 勇,熊孟辉,易同生,等. 论多层叠置独立含煤层气系统: 以贵州织金−纳雍煤田水公河向斜为例[J]. 地质论评,2008,54(1):65−70.
QIN Yong,XIONG Menghui,YI Tongsheng,et al. On unattached multiple superposed coalbed-methane system: In a case of the Shuigonghe syncline, Zhijin-Nayong coalfield, Guizhou[J]. Geological Review,2008,54(1):65−70.
|
[5] |
傅雪海,葛燕燕,梁文庆,等. 多层叠置含煤层气系统递进排采的压力控制及流体效应[J]. 天然气工业,2013,33(11):35−39. doi: 10.3787/j.issn.1000-0976.2013.11.006
FU Xuehai,GE Yanyan,LIANG Wenqing,et al. Pressure control and fluid effect of progressive drainage of multiple superposed CBM system[J]. Natural Gas Industry,2013,33(11):35−39. doi: 10.3787/j.issn.1000-0976.2013.11.006
|
[6] |
秦 勇,申 建,沈玉林. 叠置含气系统共采兼容性—煤系“三气”及深部煤层气开采中的共性地质问题[J]. 煤炭学报,2016,41(1):14−23.
QIN Yong,SHEN Jian,SHEN Yulin. Joint mining compatibility of superposed gas-bearing systems: A general geological problem for extraction of three natural gases and deep CBM in coal series[J]. Journal of China Coal Society,2016,41(1):14−23.
|
[7] |
秦 勇. 煤系气聚集系统与开发地质研究战略思考[J]. 煤炭学报,2021,46(8):2387−2399.
QIN Yong. Strategic thinking on research of coal measure gas accumulation system and development geology[J]. Journal of China Coal Society,2021,46(8):2387−2399.
|
[8] |
桑树勋,周效志,刘世奇,等. 岩石力学地层理论方法及其煤系气高效勘探开发应用基础述评[J]. 地质学报,2022,96(1):304−316. doi: 10.3969/j.issn.0001-5717.2022.01.024
SANG Shuxun,ZHOU Xiaozhi,LIU Shiqi,et al. A review of mechanical stratigraphy methodology and its application in high-exploration and development of coal measure gas[J]. Acta Geologica Sinica,2022,96(1):304−316. doi: 10.3969/j.issn.0001-5717.2022.01.024
|
[9] |
毕彩芹,胡志方,汤达祯,等. 煤系气研究进展与待解决的重要科学问题[J]. 中国地质,2021,48(2):402−423. doi: 10.12029/gc20210205
BI Caiqin,HU Zhifang,TANG Dazhen,et al. Research progress of coal measure gas and some important scientific problems[J]. Geology in China,2021,48(2):402−423. doi: 10.12029/gc20210205
|
[10] |
秦 勇,吴建光,申 建,等. 煤系气合采地质技术前缘性探索[J]. 煤炭学报,2018,43(6):1504−1516.
QIN Yong,WU Jianguang,SHEN Jian,et al. Frontier research of geological technology for coal measure gas joint-mining[J]. Journal of China Coal Society,2018,43(6):1504−1516.
|
[11] |
梁 冰,石迎爽,孙维吉,等. 层间距对双层煤层气藏合采解吸影响实验[J]. 中国矿业大学学报,2020,49(1):54−61.
LIANG Bing,SHI Yingshuang,SUN Weiji,et al. Experiment on influence of inter layer spacing on combined desorption of double–layer coalbed methane reservoir[J]. Journal of China University of Mining & Technology,2020,49(1):54−61.
|
[12] |
WANG Ziwei,QIN Yong. Physical experiments of CBM coproduction: A case study in Laochang district, Yunnan Province, China[J]. Fuel,2019,239:964−981. doi: 10.1016/j.fuel.2018.11.082
|
[13] |
王子威. 煤层气合采干扰模拟与地质-数学模型[D]. 徐州: 中国矿业大学, 2021.
WANG Ziwei. Simulation and geological-mathematical models of CBM co-production interference: a case of Longtan formation in western Guizhou and eastern Yunnan, China[D]. Xuzhou: China University of Mining and Technology, 2021.
|
[14] |
GUO Chen,QIN Yong,SUN Xueyang,et al. Physical simulation and compatibility evaluation of multi-seam CBM co-production: Implications for the development of stacked CBM systems[J]. Journal of Petroleum Science and Engineering,2021,204:108702. doi: 10.1016/j.petrol.2021.108702
|
[15] |
汪志明, 王小秋, 叶建平, 等. 一种多煤层煤层气合采实验装置[P]. 中国: ZL 201710317364.6, 2017−09−01.
|
[16] |
刘靓倩. 滇东黔西地区多煤层气藏合采层间窜流实验研究[D]. 北京: 中国石油大学, 2019.
LIU Liangqian. Experimental study on interlayered crossflow of multilayered CBM reservoir in eastern Yunnan and western Guizhou[D]. Beijing: China University of Petroleum, 2019.
|
[17] |
石迎爽,梁 冰,薛 璐,等. 多层煤层气藏合采特征及物理模拟实验方法研究[J]. 实验力学,2019,34(6):1010−1018. doi: 10.7520/1001-4888-18-135
SHI Yingshuang,LIANG Bing,XUE Lu,et al. Study on the characteristics of multi–layer CBM reservoir mining and the experimental method of its physical simulation[J]. Journal of Experimental Mechanics,2019,34(6):1010−1018. doi: 10.7520/1001-4888-18-135
|
[18] |
黄红星, 彭宏钊, 周劲辉, 等. 一种煤层气多层合采实验装置[P]. 中国, ZL202010639765.5, 2020−09−25.
|
[19] |
李 松, 汤达祯, 许 浩, 等. 一种多煤层煤层气井排采物理模拟装置及其实验方法[P]. 中国: 201710045989.1, 2017−06−09.
|
[20] |
李 松, 汤达祯, 许 浩, 等. 一种多煤层煤层气合采物理模拟实验装置[P]. 中国: 202110685539.5, 2021−08−03.
|
[21] |
郑力会, 魏攀峰, 孙 昊, 等. 天然气储层多层合采产能模拟实验装置[P]. 中国, CN106481338A, 2017−03−08.
|
[22] |
郑力会,李秀云,苏关东,等. 煤层气工作流体储层伤害评价方法的适宜性研究[J]. 天然气工业,2018,38(9):34−45.
ZHENG Lihui,LI Xiuyun,SU Guandong,et al. Applicability of working fluid damage assessment methods for coalbed methane reservoirs[J]. Natural Gas Industry,2018,38(9):34−45.
|
[23] |
许 江,李奇贤,彭守建,等. 不同层间压差条件下叠置煤储层的定产合采试验研究[J]. 煤炭科学技术,2020,48(1):46−53.
XU Jiang,LI Qixian,PENG Shoujian,et al. Experimental study on commingled production with constant-rate of a multi-superimposed gas system under different interlayer pressure difference[J]. Coal Science and Technology,2020,48(1):46−53.
|
[24] |
许 江,李奇贤,彭守建,等. 定产定压条件下叠置煤储层煤层气合采试验研究[J]. 煤炭学报,2021,46(8):2510−2523.
XU Jiang,LI Qixian,PENG Shoujian,et al. Experimental study on CBM coproduction in superposed gas-bearing systems under constant gas production rate and constant wellbore pressure[J]. Journal of China Coal Society,2021,46(8):2510−2523.
|
[25] |
李奇贤,许 江,彭守建,等. 合采条件下低压储层内流体运移特性试验研究[J]. 煤炭学报,2021,46(S1):351−363.
LI Qixian,XU Jiang,PENG Shoujian,et al. Physical simulation experiment on flow characteristics in a low-pressure reservoir under co-production[J]. Journal of China Coal Society,2021,46(S1):351−363.
|
[26] |
许 江,李奇贤,彭守建,等. 叠置煤储层煤层气开采物理模拟试验方法研究[J]. 煤炭科学技术,2021,49(1):225−233.
XU Jiang,LI Qixian,PENG Shoujian,et al. Study on physical simulation test method of coalbed methane production in superimposed gas-bearing system[J]. Coal Science and Technology,2021,49(1):225−233.
|
[27] |
许 江,张超林,彭守建,等. 多层叠置煤层气系统合采方式及其优化[J]. 煤炭学报,2018,43(6):1677−1686.
XU Jiang,ZHANG Chaolin,PENG Shoujian,et al. Multiple layers superposed CBM system commingled drainage schedule and its optimization[J]. Journal of China Coal Society,2018,43(6):1677−1686.
|
[28] |
彭守建,贾 立,许 江,等. 煤层瓦斯抽采多物理场参数动态响应特征及其耦合规律[J]. 煤炭学报,2022,47(3):1235−1243.
PENG Shoujian,JIA Li,XU Jiang,et al. Dynamic response characteristics and coupling law of multi physical field parameters in coal seam gas drainage[J]. Journal of China Coal Society,2022,47(3):1235−1243.
|
[29] |
张超林. 叠置含气系统煤层气开采制度优化及注二氧化碳增产机理研究[D]. 重庆: 重庆大学, 2018.
ZHANG Chaolin. Optimization of CBM drainage schedule and mechanism of CO2-ECBM recovery for superposed gas-bearing system[D]. Chongqing: Chongqing University, 2018.
|
[30] |
胡 勇,李熙喆,万玉金,等. 高低压双气层合采产气特征[J]. 天然气工业,2009,29(2):89−91. doi: 10.3787/j.issn.1000-0976.2009.02.025
HU Yong,LI Xizhe,WAN Yujin,et al. Gas producing property of commingled production for high-low pressure double gas reservoir[J]. Natural Gas Industry,2009,29(2):89−91. doi: 10.3787/j.issn.1000-0976.2009.02.025
|
[31] |
闫长辉,李正健,郑 军,等. 大牛地气田低孔低渗气藏合采时机分析[J]. 石油天然气学报,2011,33(9):109−112, 168. doi: 10.3969/j.issn.1000-9752.2011.09.024
YAN Changhui,LI Zhengjian,ZHENG Jun,et al. Analysis on optimal time of commingled production in the low permeability and porosity gas reservoir[J]. Journal of Oil and Gas Technology,2011,33(9):109−112, 168. doi: 10.3969/j.issn.1000-9752.2011.09.024
|
[32] |
冯 毅,魏攀峰,段长江,等. 室内定量试验评价临兴地区致密砂岩气两层合采产量变化[J]. 非常规油气,2017,4(6):40−44.
FENG Yi,WEI Panfeng,DUAN Changjiang,et al. Quantitative evaluation on the change of dual reservoir commingled production of tight sandstone gas in Linxing area through indoor experiment[J]. Unconventonal Oil & Gas,2017,4(6):40−44.
|
[33] |
冯 毅,孟尚志,魏攀峰,等. 临兴地区砂岩与页岩两层合采效果试验探究[J]. 非常规油气,2017,4(2):73−77.
FENG Yi,MENG Shangzhi,WEI Panfeng,et al. Experimental study on the effect of two layers commingled production of sandstone gas and shale gas Linxing area[J]. Unconventonal Oil & Gas,2017,4(2):73−77.
|
[34] |
谢英刚,段长江,魏攀峰,等. 临兴地区砂岩两层合采接替时机优选实验[J]. 非常规油气,2017,4(1):63−66.
XIE Yinggang,DUAN Changjiang,WEI Pangfeng,et al. Experimental optimization on favorable access time in dual reservoirs commingled production of sand gas in Linxing area[J]. Unconventonal Oil & Gas,2017,4(1):63−66.
|
[35] |
谭玉涵,郭京哲,郑 锋,等. 气井多层合采渗流特征及接替生产物理模拟[J]. 石油与天然气地质,2015,36(6):1009−1015.
TAN Yuhan,GUO Jingzhe,ZHENG Feng,et al. Physical simulation on seepage features of commingled production and right time of production conversion for gas wells[J]. Oil & Gas Geology,2015,36(6):1009−1015.
|
[36] |
王文举,潘少杰,李寿军,等. 致密气藏高低压多层合采物理模拟研究[J]. 非常规油气,2016,3(2):59−64. doi: 10.3969/j.issn.2095-8471.2016.02.010
WANG Wenju,PAN Shaojie,LI Shoujun,et al. Physical simulation of high-pressure and low-pressure multilayer production of tight gas reservoir[J]. Unconventonal Oil & Gas,2016,3(2):59−64. doi: 10.3969/j.issn.2095-8471.2016.02.010
|
[37] |
李 奇,高树生,刘华勋,等. 致密砂岩气藏多层合采气水交互越流模拟实验[J]. 天然气工业,2022,42(1):133−145.
LI Qi,GAO Shusheng,LIU Huaxun,et al. Simulation experiment on the gas-water interaction crossflow during the multi-layer commingled production of tight sandstone gas reservoirs[J]. Natural Gas Industry,2022,42(1):133−145.
|
[38] |
朱华银,胡 勇,李江涛,等. 柴达木盆地涩北多层气藏合采物理模拟[J]. 石油学报,2013,34(S1):136−142. doi: 10.7623/syxb2013S1016
ZHU Huayin,HU Yong,LI Jiangtao,et al. Physical simulation of commingled production for multilayer gas reservoir in Sebei gas field, Qaidam basai[J]. Acta Petrolei Sinca,2013,34(S1):136−142. doi: 10.7623/syxb2013S1016
|
[39] |
朱华银,胡 勇,朱维耀,等. 气藏开发动态物理模拟技术[J]. 石油钻采工艺,2010,32(S1):54−57. doi: 10.3969/j.issn.1000-7393.2010.z1.013
ZHU Huayin,HU Yong,ZHU Weiyao,et al. Physical simulation technology for gas reservoir development behavior analysis[J]. Oil Drilling & Production Technology,2010,32(S1):54−57. doi: 10.3969/j.issn.1000-7393.2010.z1.013
|
[40] |
游利军,李 雷,康毅力,等. 考虑有效应力与含水饱和度的致密砂岩气层供气能力[J]. 天然气地球科学,2012,23(4):764−769.
YOU Lijun,LI Lei,KANG Yili,et al. Gas supply capacity of tight sandstone in considering effective stress and water saturation[J]. Natural Gas Geoscience,2012,23(4):764−769.
|
[41] |
廖 毅. 致密砂岩气藏多层合采实验模拟及矿场应用[D]. 成都: 西南石油大学, 2014.
LIAO Yi. Experimental simulation of multi-layer co-production in tight sandstone gas reservoirs and application in the mine[D]. Chengdu: Southwest Petroleum University, 2014.
|
[42] |
王 璐,杨胜来,刘义成,等. 缝洞型碳酸盐岩气藏多层合采供气能力实验[J]. 石油勘探与开发,2017,44(5):779−787.
WANG Lu,YANG Shenglai,LIU Yicheng,et al. Experiments on gas supply capability of commingled production in a fracture-cavity carbonate gas reservoir[J]. Petroleum Exploration and Development,2017,44(5):779−787.
|
[43] |
王 璐. 深层碳酸盐岩气藏特殊渗流规律及储量可动性研究[D]. 北京: 中国石油大学(北京), 2019.
WANG Lu. Investigation on special seepage law and reserves mobility of deep carbonate gas reservoirs[D]. Beijing: China University of Petroleum (Beijing), 2019.
|
[44] |
LIU Guangfeng,MENG Zhan,LUO Dayong,et al. Experimental evaluation of interlayer interference during commingled production in a tight sandstone gas reservoir with multi-pressure systems[J]. Fuel,2020,262:116557. doi: 10.1016/j.fuel.2019.116557
|
[45] |
徐小虎,王 亚,蔺景德,等. 多压力系统致密气藏合采特征及开发方式优化实验[J]. 大庆石油地质与开发,2020,39(1):153−161. doi: 10.19597/j.issn.1000-3754.201810022
XU Xiaohu,WANG Ya,LIN Jingde,et al. Commingled production characteristics of multi-pressure-system tight gas reservoirs and experiment of the developing mode optimization[J]. Petroleum Geology & Oilfield Development in Daqing,2020,39(1):153−161. doi: 10.19597/j.issn.1000-3754.201810022
|
[46] |
WANG Lu,HE Yongming,WANG Qian,et al. Improving tight gas recovery from multi-pressure system during commingled production: An experimental investigation[J]. Natural Resources Research,2021,30:3673−3694. doi: 10.1007/s11053-021-09869-7
|