Citation: | XU Junce,PU Hai,SHA Ziheng. Experimental study on dynamic mechanical behavior of frozen sandstone with different saturations[J]. Coal Science and Technology,2023,51(9):88−99. DOI: 10.12438/cst.2022-0989 |
Water content is one of the critical factors affecting frost damage to rock masses in alpine regions. A dynamic disturbance load further complicates the issue. In this study, the effects of saturation and impact loading on the dynamic behavior of the frozen red sandstone were investigated using a low-temperature split Hopkinson pressure bar (LT-SHPB) experimental system. By combining low-field nuclear magnetic resonance (NMR) and scanning electron microscopy (SEM), the dynamic evolution of the microstructure of the frozen sandstone due to changes in saturation was investigated. The experimental results show that the increase in saturation reshapes the pore structure of the frozen sandstone and promotes the expansion of pores of different sizes during freezing, while the frozen samples at complete saturation are mainly developed with mesopore and macropore. The dynamic strength, elastic modulus and brittleness index of the frozen sandstone under impact loading, which are limited by the critical saturation Src, tend to increase and then decrease with saturation increase. In contrast, the ultimate deformation capacity of the frozen sandstone showed an opposite trend with saturation. With increasing impact loading, the dynamic strength, elastic modulus, and peak strain of the frozen sandstone gradually increase, showing an obvious strain-rate enhancement effect; while the brittleness index decreases by 8.1% at full saturation when the impact velocity increases from 4 m/s to 6 m/s, indicating that the dynamic damage mode develops from brittle to ductile. Moreover, the frozen samples changed from tensile damage to composite damage with increasing saturation and impact loading; the distribution of crushing masses remained closely related to their dynamic strength. Based on the experimental results, the mechanism of the effects of saturation variation on the dynamic mechanical behavior of frozen sandstone is discussed.
[1] |
宋勇军,杨慧敏,谭 皓,等. 冻融环境下不同饱和度砂岩损伤演化特征研究[J]. 岩石力学与工程学报,2021,40(8):1513−1524. doi: 10.13722/j.cnki.jrme.2021.0089
SONG Yongjun,YANG Huimin,TAN Hao,et al. Study on damage evolution characteristics of sandstone with different saturations in freezethaw environment[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(8):1513−1524. doi: 10.13722/j.cnki.jrme.2021.0089
|
[2] |
陈彦龙,崔慧栋,李 明,等. 实时低温条件下露天矿饱和损伤煤系砂岩动态力学特性及其破坏机制[J]. 煤炭学报,2022,47(3):1−14.
CHEN Yanlong,CUI Huidong,LI Ming,et al. Study on dynamic mechanical properties and failure mechanism of saturated coalmeasure sandstone in open pit mine with damage under real-time low-temperature conditions[J]. Journal of China Coal Society,2022,47(3):1−14.
|
[3] |
刘 波,孙颜顶,袁艺峰,等. 不同含水率冻结砂岩强度特性及强度强化机制[J]. 中国矿业大学学报,2020,49(6):1085−1093.
LIU Bo,SUN Yanding,YUAN Yifeng,et al. Strength characteristics of frozen sandstone with different water content and its strengthening mechanism[J]. Journal of China University of Mining & Technology,2020,49(6):1085−1093.
|
[4] |
杨更社,魏 尧,申艳军,等. 冻结饱和砂岩三轴压缩力学特性及强度预测模型研究[J]. 岩石力学与工程学报,2019,38(4):683−694. doi: 10.13722/j.cnki.jrme.2018.1417
YANG Gengshe,WEI Yao,SHEN Yanjun,et al. Mechanical behavior and strength forecast model of frozen saturated sandstone under triaxial compression[J]. Chinese Journal of Rock Mechanics and Engineering,2019,38(4):683−694. doi: 10.13722/j.cnki.jrme.2018.1417
|
[5] |
KODAMA J J,KODAMA T,GOTO Y,et al. The effects of water content, temperature and loading rate on strength and failure process of frozen rocks[J]. International Journal of Rock Mechanics and Mining Sciences,2013,62:1−13. doi: 10.1016/j.ijrmms.2013.03.006
|
[6] |
HUANG Shibing,CAI Yuantian,LIU Yanzhang,et al. Experimental and theoretical study on frost deformation and damage of red sandstones with different water contents[J]. Rock Mechanics and Rock Engineering,2021,54(8):4163−4181. doi: 10.1007/s00603-021-02509-9
|
[7] |
徐光苗,刘泉声,彭万巍,等. 低温作用下岩石基本力学性质试验研究[J]. 岩石力学与工程学报,2006,25(12):2502−2508. doi: 10.3321/j.issn:1000-6915.2006.12.016
XU Guangmiao,LIU Quansheng,PENG Wanwei,et al. Experimental study on basic mechanical behaviors of rocks under low temperatures[J]. Chinese Journal of Rock Mechanics and Engineering,2006,25(12):2502−2508. doi: 10.3321/j.issn:1000-6915.2006.12.016
|
[8] |
SARICI Didem Eren,OZDEMIR Engin. Determining point load strength loss from porosity, Schmidt hardness, and weight of some sedimentary rocks under freeze–thaw conditions[J]. Environmental Earth Sciences,2018,77:62. doi: 10.1007/s12665-018-7241-9
|
[9] |
XU Junce,PU Hai,SHA Ziheng. Mechanical behavior and decay model of the sandstone in Urumqi under coupling of freeze–thaw and dynamic loading[J]. Bulletin of Engineering Geology and the Environment,2021,80(4):2963−2978. doi: 10.1007/s10064-021-02133-5
|
[10] |
LI Jielin, HONG Liu, ZHOU Keping, et al. Mechanical characteristics and mesostructural damage of saturated limestone under different load and unload paths[J]. Advances in Civil Engineering, 2021: 1−16.
|
[11] |
LIU Shi,XU Jinyu,LIU Shaohe,et al. Fractal study on the dynamic fracture of red sandstone after FT cycles[J]. Environmental Earth Sciences,2022,81(5):1−11.
|
[12] |
ZAKHAROV E V. Effects of negative temperatures on crushing rocks of various deposits in Yakutia[J]. Obogashchenie Rud,2021,32(4):3−9.
|
[13] |
YANG Renshu,FANG Shizheng,GUO Dongming,et al. Study on dynamic tensile strength of red sandstone under impact loading and negative temperature[J]. Geotechnical and Geological Engineering,2019,37(5):4527−4537. doi: 10.1007/s10706-019-00927-9
|
[14] |
WENG Lei,WU Zhijun,LIU Quansheng,et al. Energy dissipation and dynamic fragmentation of dry and water-saturated siltstones under sub-zero temperatures[J]. Engineering fracture mechanics,2019,220:106659. doi: 10.1016/j.engfracmech.2019.106659
|
[15] |
万 亿,陈国庆,孙 祥,等. 冻融后不同含水率红砂岩三轴蠕变特性及损伤模型研究[J]. 岩土工程学报,2021,43(8):1463−1472. doi: 10.11779/CJGE202108011
WAN Yi,CHEN Guoqing,SUN Xiang,et al. Triaxial creep characteristics and damage model for red sandstone subjected to freezethaw cycles under different water contents[J]. Chinese Journal of Geotechnical Engineering,2021,43(8):1463−1472. doi: 10.11779/CJGE202108011
|
[16] |
XU Junce,PU Hai,SHA Ziheng. Experimental study on the effect of brittleness on the dynamic mechanical behaviors of the coal measures sandstone[J]. Advances in Civil Engineering,2021:1−11.
|
[17] |
陈国庆,简大华,陈宇航,等. 不同含水率冻融后红砂岩剪切蠕变特性[J]. 岩土工程学报,2021,43(4):661−669. doi: 10.11779/CJGE202104008
CHEN Guoqing,JIAN Dahua,CHEN Yuhang,et al. Shear creep characteristics of red sandstone after freezethaw with different water contents[J]. Chinese Journal of Geotechnical Engineering,2021,43(4):661−669. doi: 10.11779/CJGE202104008
|
[18] |
周科平,李杰林,许玉娟,等. 冻融循环条件下岩石核磁共振特性的试验研究[J]. 岩石力学与工程学报,2012,31(4):731−737. doi: 10.3969/j.issn.1000-6915.2012.04.012
ZHOU Keping,LI Jielin,XU Yujuan,et al. Experimental study of NMR characteristics in rock under freezing and thawing cycles[J]. Chinese Journal of Rock Mechanics and Engineering,2012,31(4):731−737. doi: 10.3969/j.issn.1000-6915.2012.04.012
|
[19] |
程 桦,陈汉青,曹广勇,等. 多孔岩石冻融水分迁移损伤机制及试验验证[J]. 岩石力学与工程学报,2020,39(9):1739−1749. doi: 10.13722/j.cnki.jrme.2019.1234
CHENG Hua,CHEN Hanqing,CAO Guangyong,et al. Damage mechanism of porous rock caused by moisture migration during freezethaw process and experimental verification[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(9):1739−1749. doi: 10.13722/j.cnki.jrme.2019.1234
|
[20] |
YAO Yanbin,LIU Dameng,CHE Yao,et al. Petrophysical characterization of coals by low-field nuclear magnetic resonance (NMR)[J]. Fuel,2010,89(7):1371−1380. doi: 10.1016/j.fuel.2009.11.005
|
[21] |
LYU Zhitao,LUO Sicheng,XIA Caichu,et al. A thermalmechanical coupling elastoplastic model of freeze–thaw deformation for porous rocks[J]. Rock Mechanics and Rock Engineering,2022,55:3195−3212.
|
[22] |
康永水,刘泉声,赵 军,等. 岩石冻胀变形特征及寒区隧道冻胀变形模拟[J]. 岩石力学与工程学报,2012,31(12):2518−2526. doi: 10.3969/j.issn.1000-6915.2012.12.016
KANG Yongshui,LIU Quansheng,ZHAO Jun,et al. Research on frost deformation characteristics of rock and simulation of tunnel frost deformation in cold region[J]. Chinese Journal of Rock Mechanics and Engineering,2012,31(12):2518−2526. doi: 10.3969/j.issn.1000-6915.2012.12.016
|
[23] |
李宏岩. 低温下砂岩动态力学特性试验研究[J]. 中国测试,2022,48(6):148−152.
LI Hongyan. Experimental study on dynamic mechanical properties of sandstone at sub-zero temperature[J]. China Measurement & Test,2022,48(6):148−152.
|
[24] |
ZHANG Jian,DENG Hongwei,DENG Junren,et al. Development of energybased brittleness index for sandstone subjected to freeze-thaw cycles and impact loads[J]. IEEE Access,2018,6:48522−48530. doi: 10.1109/ACCESS.2018.2867349
|
[25] |
HUCKA V,DAS B. Brittleness determination of rocks by different methods[J]. International journal of Rock Mechanics and Mining Sciences,1974,11(10):389−392. doi: 10.1016/0148-9062(74)91109-7
|
[26] |
郑广辉,许金余,王 鹏,等. 冻融循环作用下层理砂岩物理特性及劣化模型[J]. 岩土力学,2019,40(2):632−641. doi: 10.16285/j.rsm.2017.1679
ZHENG Guanghui,XU Jinyu,WANG Peng,et al. physical characteristics and degradation model of stratified sandstone under freeze-thaw cycling[J]. Rock and Soil Mechanics,2019,40(2):632−641. doi: 10.16285/j.rsm.2017.1679
|
[27] |
宋勇军,张磊涛,任建喜,等. 低温环境下红砂岩蠕变特性及其模型[J]. 煤炭学报,2020,45(8):2795−2803. doi: 10.13225/j.cnki.jccs.2019.0678
SONG Yongjun,ZHANG Leitao,REN Jianxi,et al. Creep property and model of red sandstone under low temperature environment[J]. Journal of China Coal Society,2020,45(8):2795−2803. doi: 10.13225/j.cnki.jccs.2019.0678
|
[28] |
BOHACS Kevin M, CARROLL Alan R, NEAL John E, et al. Lake-basin type, source potential, and hydrocarbon character: integrated-sequence-stratigraphic-geochemical framework[M]. Oklahoma: American Association of Petroleum Geologists, 2020: 3−12.
|
[29] |
PLATT Nigel H,WRIGHT V. Paul. Palustrine carbonates and the Florida Everglades; towards an exposure index for the fresh-water environment[J]. Journal of Sedimentary Petrology,1992,62(6):1058−1071.
|
[30] |
PRICK Angelique. Critical degree of saturation as a threshold moisture level in frost weathering of limestones[J]. Permafrost and Periglacial Processes,1997,8(1):91−99. doi: 10.1002/(SICI)1099-1530(199701)8:1<91::AID-PPP238>3.0.CO;2-4
|
[31] |
申艳军,杨更社,王 婷,等. 岩石内孔隙/裂隙冻胀力模型及其适用性评价[J]. 冰川冻土,2019,41(1):117−128.
SHEN Yanjun,YANG Gengshe,WANG Ting,et al. Evaluation of frost heave force models of pore /fissure in rock and their applicability[J]. Journal of Glaciology and Geocryology,2019,41(1):117−128.
|
[32] |
贾海梁,项 伟,谭 龙,等. 砂岩冻融损伤机制的理论分析和试验验证[J]. 岩石力学与工程学报,2016,35(5):879−895. doi: 10.13722/j.cnki.jrme.2015.1300
JIA Hailiang,XIANG Wei,TAN Long,et al. Theoretical analysis and experimental verifications of frost damage mechanism of sandstone[J]. Chinese Journal of Rock Mechanics and Engineering,2016,35(5):879−895. doi: 10.13722/j.cnki.jrme.2015.1300
|
[33] |
刘德俊,浦 海,沙子恒,等. 冻融循环条件下砂岩动态拉伸力学特性试验研究[J]. 煤炭科学技术,2022,50(8):60−67.
LIU Dejun,PU Hai,SHA Ziheng,et al. Experimental study on dynamic tensile mechanical properties of sandstone under freeze-thaw cycles[J]. Coal Science and Technology,2022,50(8):60−67.
|
1. |
成世兴,梁鹏飞,王灿,贺文慧. 小煤柱巷道基本顶细砂岩动态力学特性及破碎特征. 煤炭技术. 2025(05): 34-38 .
![]() | |
2. |
谢昊天,徐颖,郑强强,于美鲁,谢守冬,李成杰. 冻融循环作用下饱水砂岩强度衰减及细观结构特征. 煤炭科学技术. 2024(12): 84-93 .
![]() |