Advance Search
LI Chengxiao,YANG Renshu,WANG Yanbing,et al. Research on deep hole segmented charge cut blasting of rock roadway based on numerical simulation[J]. Coal Science and Technology,2023,51(9):100−111. DOI: 10.12438/cst.2022-0906
Citation: LI Chengxiao,YANG Renshu,WANG Yanbing,et al. Research on deep hole segmented charge cut blasting of rock roadway based on numerical simulation[J]. Coal Science and Technology,2023,51(9):100−111. DOI: 10.12438/cst.2022-0906

Research on deep hole segmented charge cut blasting of rock roadway based on numerical simulation

Funds: 

National Natural Science Foundation of China(51934001); Fundamental Research Funds for Central Universities (FRF-TP-20-037A1, FRF-IDRY-20-019)

More Information
  • Received Date: July 15, 2022
  • Available Online: July 26, 2023
  • With the increase of the depth of the blast hole, the rock clamping effect at the bottom of the blast hole is enhanced, resulting in low rock breaking efficiency and blast hole utilization. The past continuous charging method can not solve the above problems. On this basis, this paper studies the rock roadway deep hole segmented charging cut blasting technology to improve the cut blasting efficiency. Using the smooth particle hydrodynamics-finite element method (SPH-FEM), a single-hole cut blasting model with different segmented charge structures was established, and the blasting speed of rock particles in the rock, the number of rock blasting and the characteristics of blasting cavity were analyzed in the blasting process under different models. The results show that different charge structures affect the damage range of the rock near the blast hole, and the damage area of the traditional continuous charge structure in the direction of the blast hole is larger than that of the segmented charge structure. In addition, the continuous charge structure makes the energy distribution of the explosive uneven because the explosive is concentrated at the bottom of the blast hole, resulting in poor blasting effect. The segmented charge structure can increase the number of rock fragments and optimize the blasting cavity, and the rock particles accelerate twice in the process of flying. The large or small proportion of the first segment charge obviously causes the unreasonable use of explosive energy and the poor effect of blasting cavity. Under the conditions of blast hole length, rock parameters and explosive performance set in the simulation, when the first stage charge ratio is 0.4, deep-hole rock tunnel excavation and blasting can make full use of explosive energy to achieve better cut blasting effect. The optimal subsection ratio obtained by numerical simulation was applied to the blasting construction of roadway excavation, and the delay initiation of two explosives in the cut hole was realized by using digital electronic detonator. The field test results show that the segmented charging can create good blasting effect and improve the utilization rate of blast holes in deep hole cut blasting.

  • [1]
    杨仁树, 王 越, 林志博. 煤矿岩巷爆破掘进炮孔密度优化研究[J]. 煤炭科学技术, 2021, 49(1): 183−191.

    YANG Renshu, WANG Yue, LIN Zhibo. Optimization of blasting hole density in rock roadway driving[J]. Coal Science and Technology, 2021, 49(1): 183−191.
    [2]
    杨仁树,张召冉,安 晨,等. 煤矿岩巷掘进爆破掏槽孔超深问题探讨[J]. 煤炭科学技术,2020,48(1):10−23.

    YANG Renshu,ZHANG Zhaoran,AN Chen,et al. Discussion on ultra-deep depth problem of slot hole in blasting excavation of rock roadway in coal mine[J]. Coal Science and Technology,2020,48(1):10−23.
    [3]
    CHAKRABORTY AK,ROY PP,JETHWA JL,et al. Blast performance in small tunnels-a critical evaluation in underground metal mines[J]. Tunnelling and Underground Space Technology,1998,13(3):331−339. doi: 10.1016/S0886-7798(98)00059-5
    [4]
    杨仁树, 杨国梁, 高祥涛. 定向断裂控制爆破理论与实践[M]. 北京: 科学出版社, 2017.
    [5]
    ZHANG Z X. Rock fracture and blasting: theory and applications[M]. Amsterdam: Elsevier, 2016.
    [6]
    SHAPIRO V Y. Efficiency of cut configuration in driving tunnels with a set of deep blast holes[J]. Soviet Mining Science,1989,25:379−386. doi: 10.1007/BF02528560
    [7]
    SINGH S P. Mechanism of cut blasting[J]. Transactions of the Institution of Mining & Metallurgy,1995,104:125−194.
    [8]
    左进京,杨仁树,肖成龙,等. 煤矿井巷中空孔掏槽爆破模型实验研究[J]. 矿业科学学报,2018,3(4):335−341.

    ZUO Jinjing,YANG Renshu,XIAO Chenglong,et al. Model test of empty hole cut blasting in coal mine rock drivage[J]. Journal of Mining Science and Technology,2018,3(4):335−341.
    [9]
    刘翔宇,龚 敏,吴昊骏,等. 自由面变化条件下隧道电子雷管爆破确定方法[J]. 爆炸与冲击,2021,41(10):1−13.

    LIU Xiangyu,GONG Min,WU Haojun,et al. Determination method of tunnel blasting parameters using electronic detonator under changing condition of free surface[J]. Explosion and Shock Waves,2021,41(10):1−13.
    [10]
    贾海鹏,刘殿书,陈 斌,等. 相邻隧道爆破振速分布规律研究[J]. 矿业科学学报,2019,4(6):506−514.

    JIA Haipeng,LIU Dianshu,CHEN Bin,et al. Study on the vibration velocity distribution law od adjacent tunnel blasting[J]. Journal of Mining Science and Technology,2019,4(6):506−514.
    [11]
    张召冉,陈华义,矫伟刚,等. 含空孔直眼掏槽空孔效应及爆破参数研究[J]. 煤炭学报,2020,45(S2):791−800.

    ZHANG Zhaoran,CHEN Huayi,JIAO Weigang,et al. Rock breaking mechanism and blasting parameters of straight hole cutting with empty-hole[J]. Journal of China Coal Society,2020,45(S2):791−800.
    [12]
    李 清,张随喜,万明华,等. 长径比对束状炮孔端部裂纹力学特征影响的研究[J]. 矿业科学学报,2019,4(2):112−119.

    LI Qing,ZHANG Suixi,WAN Minghua,et al. Study on the influence of length-diameter ratio on the mechanical characteristics of cracks at the end of linear charges[J]. Journal of Mining Science and Technology,2019,4(2):112−119.
    [13]
    KHADEMIAN A,BAGHERPOUR R. Environmentally sustainable mining through proper selection of explosives in blasting operation[J]. Environmental Earth Sciences,2017,76(166):1−11.
    [14]
    龚 敏,文 斌,王 华. 掏槽参数对煤矿岩巷爆破效果的影响[J]. 爆炸与冲击,2015,35(4):576−587. doi: 10.11883/1001-1455(2015)04-0576-09

    GONG Min,WEN Bin,WANG Hua. Influence of cut parameters on blasting effect in rock roadway of coal mine[J]. Explosion and Shock Waves,2015,35(4):576−587. doi: 10.11883/1001-1455(2015)04-0576-09
    [15]
    李廷春,刘洪强. 一次成井掏槽爆破炮孔合理封堵长度研究[J]. 中国矿业大学学报,2012,41(3):384−389.

    LI Tingchun,LIU Hongqiang. Optimized cut hole stemming length for shaft excavation using one-step deep-hole blasting[J]. Journal of China University of Mining and Technology,2012,41(3):384−389.
    [16]
    杨仁树,郭 洋,李 清,等. 中间起爆柱状药包爆炸应力应变场演化规律[J]. 煤炭学报,2019,44(11):3423−3431.

    YANG Renshu,GUO Yang,LI Qing,et al. Evolution law on explosive stress and strain field of column charges at middle detonation position[J]. Journal of China Coal Society,2019,44(11):3423−3431.
    [17]
    杨国梁,姜琳琳,杨仁树. 复式楔形深孔掏槽爆破研究[J]. 中国矿业大学学报,2013,42(5):755−760.

    YANG Guoliang,JIANG Linlin,YANG Renshu. Investigation of cut blasting with duplex wedge deep holes[J]. Journal of China University of Mining and Technology,2013,42(5):755−760.
    [18]
    ZHANG H,LI T C,DU Y T,et al. Theoretical and numerical investigation of deep-hole cut blasting based on cavity cutting and fragment throwing[J]. Tunnelling and Underground Space Technology,2021,113:103854.
    [19]
    张召冉, 杨仁树. 岩石巷道“多阶段”掏槽技术及应用研究[J]. 岩石力学与工程学报, 2019, 38(3): 551−559.

    ZHANG Zhaoran, YANG Renshu. Multi-step cutting technology and its application in rock roadways[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(3): 551−559.
    [20]
    张 奇,杨永琦. 分阶分段直眼掏槽[J]. 工程爆破,1997,3(2):13−17.

    ZHANG Qi,YANG Yongqi. Vertical borehole cut blasting in step and in stage[J]. Engineering Blasting,1997,3(2):13−17.
    [21]
    邹新宽,张继春,潘 强,等. 楔形分段掏槽爆破减振效应研究[J]. 西南交通大学学报,2018,53(3):450−458. doi: 10.3969/j.issn.0258-2724.2018.03.004

    ZOU Xinkuan,ZHANG Jichun,PAN Qiang,et al. Vibration reduction effect of stepped V-cut blasting[J]. Journal of Southwest Jiaotong University,2018,53(3):450−458. doi: 10.3969/j.issn.0258-2724.2018.03.004
    [22]
    HUO X F,SHI X Z,QIU X Y,et al. Rock damage control for large-diameter-hole lateral blasting excavation based on charge structure optimization[J]. Tunnelling and Underground Space Technology,2020,106:103569. doi: 10.1016/j.tust.2020.103569
    [23]
    LUCY L B. A numerical approach to the testing of the fission hypothesis[J]. The Astrophysical Journal,1977,8(12):1013−1024.
    [24]
    GINGOLD G. Smoothed particle hydrodynamics theory and application to non-spherical stars[J]. Monthly Notice of Royal Astronomical Society, 1977, 181: 375−389.
    [25]
    MESSAHEL R, SOULI M. SPH and ALE formulations for fluid structure coupling[J]. Cmes Computer Modeling in Engineering & Ences, 2013, 96(6): 433−455.
    [26]
    JAYASINGHE L B,SHANG J L,ZHAO Z Y,et al. Numerical investigation into the blasting-induced damage characteristics of rocks considering the role of in-situ stresses and discontinuity persistence[J]. Computer. Geotechnical,2019,116:10320.
    [27]
    XIE L X,LU W B,ZHANG Q B,et al. Analysis of damage mechanisms and optimization of cut blasting design under high in-situ stresses[J]. Tunnelling and Underground Space Technology,2017,66:19−33. doi: 10.1016/j.tust.2017.03.009
    [28]
    JOHNSON G,HOLMQUIST T. A computational constitutive model for brittle materials subjected to large strains, high strain rates and high pressures[J]. Journal of Applied Mechanics,2011,78:051003. doi: 10.1115/1.4004326
    [29]
    方 秦,孔祥振,吴 昊,等. 岩石Holmquist−Johns−on−Cook模型参数的确定方法[J]. 工程力学,2014,31(3):197−204.

    FANG Qin,KONG Xiangzhen,WU Hao,et al. Determination of Holmquist-Johns-on-Cook constitutive model parameters of rock[J]. Engineering Mechanics,2014,31(3):197−204.
    [30]
    王海波,徐 轩,宗 琦,等. 综掘硬岩深孔超前爆破研究与应用[J]. 煤炭学报,2017,42(4):908−915.

    WANG Haibo,XU Xuan,ZONG Qi,et al. Research and application of hard rock deep-hole advance blasting in comprehensive roadway excavation[J]. Journal of China Coal Society,2017,42(4):908−915.
    [31]
    ESMAEILI M, TAVAKOLI B. Finite element method simulation of explosive compaction in saturated loose sandy soils[J]. Soil Dynamics and Earthquake Engineering, 2019, 116: 446-459.
    [32]
    BUSCH C L, AIMONE-MARTIN C T, TAREFDER R A. Experimental evaluation of cratering and ground vibration in clay soils subjected to explosive air-blast loading[J]. Journal of Testing Evaluation, 2015, 43(2): 414−424.
    [33]
    王连捷,崔军文,张晓卫,等. 中国大陆科学钻主孔现今地应力状态[J]. 中国地质大学学报,2006,31(4):505−512.

    WANG Lianjie,CUI Junwen,ZHANG Xiaowei,et al. In-situ stress state in the main borehole of the chinese continental scientific drilling[J]. Journal of China University of Geosciences,2006,31(4):505−512.
    [34]
    李新平, 汪 斌, 周桂龙. 我国大陆实测深部地应力分布规律研究[J]. 岩石力学与工程学报, 2012, 31(S1): 2875−2880.

    LI Xinping, WANG Bin, ZHOU Guilong. Research on distribution rule of geostress in deep stratum in Chinese mainland[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(S1): 2875−2880.
    [35]
    刘兵权,黎立云,卫梦希,等. 基于球壳模型的地壳应力与深度关系研究[J]. 矿业科学学报,2022,7(4):474−480.

    LIU Bingquan,LI Liyun,WEI Mengxi,et al. A study on relationships between measured crustal stresses and depth based on spherical shell model[J]. Journal of Mining Science and Technology,2022,7(4):474−480.

Catalog

    Article views (141) PDF downloads (47) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return