Advance Search
ZHAO Wanli, YANG Zhanbiao. Study on strong anchor support technology in deep soft rock roadway[J]. COAL SCIENCE AND TECHNOLOGY, 2018, (12).
Citation: ZHAO Wanli, YANG Zhanbiao. Study on strong anchor support technology in deep soft rock roadway[J]. COAL SCIENCE AND TECHNOLOGY, 2018, (12).

Study on strong anchor support technology in deep soft rock roadway

More Information
  • Available Online: April 02, 2023
  • Published Date: December 24, 2018
  • According the characteristics of large buried depth,high stress and low strength of surrounding in deep soft rock roadway of Pingdingshan No.1 Mine,it is difficult to ensure the long-time stability of the roadway by traditional anchor cable support technology. Based on the high-strength anchor-injection support material and optimized grouting process parameters, a strong anchor-injection support technology was proposed, with a 25 mm diameter full-threaded high-strength hollow grouting anchor and a 29 mm diameter hollow rib hollow grouting anchor. As the core full-section anchor-integrated support scheme, high-strength support, high-ash-water ratio, high-pressure diffusion, and large-scale anchor-reinforcement support technology are adopted. Field engineering tests show that the strong anchor and bolt support realizes the full anchorage of the anchor/anchor, strengthens the mechanical connection with the surrounding rock, improves the integrity and bearing performance of the surrounding rock of the roadway, and reduces the deformation of the roof by more than 40%. The surrounding rock deformation of the roadway under complicated and difficult conditions is effectively controlled, and the construction process is simple and the cost is low.
  • Related Articles

    [1]DU Changbo, CHENG Chuanwang, YI Fu, HUANG Huijie, SUN Weize, TAO Han. Study on effect of compound surfactants on wettability of bituminous coal and its microscopic mechanism[J]. COAL SCIENCE AND TECHNOLOGY, 2024, 52(11): 346-355. DOI: 10.12438/cst.2023-1418
    [2]YANG Ming, ZHANG Tao, ZHANG Xuebo, XU Jing, HAN Longxiang, MA Ji. Study on the effect of NMR-based surfactants on pore wetting of high-order coal[J]. COAL SCIENCE AND TECHNOLOGY, 2023, 51(S2): 111-120. DOI: 10.12438/cst.2022-1974
    [3]YAN Min, YANG Ting, LIN Haifei, YAN Dongjie, LI Yong, HUO Shihao. Experimental study on the influence of surfactant foam properties on the slow release of gas in coal[J]. COAL SCIENCE AND TECHNOLOGY, 2023, 51(10): 129-139. DOI: 10.13199/j.cnki.cst.2022-1765
    [4]ZHANG Chen, MA Xiaomin, FAN Yuping, DONG Xianshu, CHEN Ruxia, LI Qiang. Effect of OP/TX emulsifiers on the effectiveness of pressurised dewatering of coal slurry and the structure of the filter cake[J]. COAL SCIENCE AND TECHNOLOGY, 2023, 51(6): 275-285. DOI: 10.13199/j.cnki.cst.2022-0327
    [5]XIE Zhixuan, ZHANG Lei, GUO Jianying, LI Bao, YANG Zhichao, ZHANG Suhong, LIU Shengyu. Effect of cationic-anionic surfactant synergistic non-polar oil on low-rank coal flotation[J]. COAL SCIENCE AND TECHNOLOGY, 2022, 50(9): 267-275.
    [6]PING An, WANG Mengdie, NIU Chenkai, XIA Wencheng, PENG Yaoli, XIE Guangyuan. Effect of surfactant on dewatering of flotation clean coal and its mechanism[J]. COAL SCIENCE AND TECHNOLOGY, 2019, (11).
    [7]SONG Jinxing, YU Shiyao, SU Xianbo. Study on velocity sensitivity damage mechanism and its proof test of coal reservoir[J]. COAL SCIENCE AND TECHNOLOGY, 2018, (6).
    [8]NIE Bai-sheng GUO Jian-hua YUAN Shao-fei WANG Chun-liang ZHAO Bi, . Comparison study on influence of external magnetic field and surfactant on surface tension of water[J]. COAL SCIENCE AND TECHNOLOGY, 2015, (4).
    [9]CHENG Hong-zhi LI Hong-qi, . Application and Development of XJM-S28 Mode Floatator[J]. COAL SCIENCE AND TECHNOLOGY, 2013, (9).
    [10]Study on Fluid Dynamics Simulation and Experiment of Wide Particle Grade Slime Floatator[J]. COAL SCIENCE AND TECHNOLOGY, 2012, (11).
  • Cited by

    Periodical cited type(18)

    1. 李阳. 影视拍摄机器人中基于目标检测信息的跟踪算法应用研究. 自动化与仪器仪表. 2025(06)
    2. 毛清华,苏毅楠,贺高峰,翟姣,王荣泉,尚新芒. 基于改进YOLOv8模型的井下人员入侵带式输送机危险区域智能识别. 工矿自动化. 2025(01): 11-20+103 .
    3. 李小军,赵明炀,李淼. 基于深度学习的钻孔冲煤量智能识别方法. 煤田地质与勘探. 2025(01): 257-270 .
    4. 路洋,董立红,叶鸥. 基于自适应链接优化的井下行人抗遮挡跟踪方法研究. 工矿自动化. 2025(02): 65-75+137 .
    5. 柳小波,范立鹏,秦丽杰,王连成,张兴帆. 机器视觉技术在矿山行业的应用现状与展望. 有色金属(矿山部分). 2025(02): 1-15 .
    6. 唐俊飞,邢海龙,李溯,张涛涛,刘恒,姚诗雨. 结合改进CNN与自注意力机制的煤矿轮式机器人目标检测技术. 煤矿安全. 2025(03): 224-232 .
    7. 毛清华,翟姣,胡鑫,苏毅楠,薛旭升. 煤矿综采工作面人员入侵危险区域智能识别方法. 煤炭学报. 2025(02): 1347-1361 .
    8. 井晶,高宇蒙,赵作鹏,闵冰冰. 一种改进的Yolov5s煤矿井下人员计数模型. 计算机仿真. 2025(04): 525-530+551 .
    9. 张宇豪,肖新宇,朱梓润,訾梦超,廖金湘. 一种基于DeepSORT的逆透视车流量检测方法. 轻工科技. 2024(01): 98-100 .
    10. 王洪磊,郭鑫,张亦凡,张俊升. 煤质煤量全面在线检测技术发展现状及应用进展. 煤炭科学技术. 2024(02): 219-237 . 本站查看
    11. 邵小强,李鑫,杨永德,原泽文,杨涛. 基于改进YOLOv7的矿井人员检测算法. 电子科技大学学报. 2024(03): 414-423 .
    12. 王茂森,鲍久圣,章全利,杨阳,袁晓明,阴妍,张可琨,葛世荣. 煤矿井下单轨吊无人驾驶目标识别算法与轨道接缝检测方法. 煤炭学报. 2024(S1): 457-471 .
    13. 狄靖尧,杨超宇. 基于改进Transformer的井下人员检测算法. 科学技术与工程. 2024(26): 11188-11194 .
    14. 解北京,李恒,董航,栾铮,张奔,李晓旭. 基于多尺度特征融合井下猴车载人状态的智能识别算法与应用. 煤炭科学技术. 2024(12): 272-286 . 本站查看
    15. 孙林,陈圣,姚旭龙,张艳博,陶志刚,梁鹏. 煤矿井下残缺信息的多目标检测方法研究. 煤炭科学技术. 2024(S2): 211-220 . 本站查看
    16. 范伟强,王雪瑾,张颖慧,李晓宇. 改进YOLOv7和DeepSORT的井下人员检测与跟踪算法. 煤炭科学技术. 2024(S2): 343-355 . 本站查看
    17. 程德强,寇旗旗,江鹤,徐飞翔,宋天舒,王晓艺,钱建生. 全矿井智能视频分析关键技术综述. 工矿自动化. 2023(11): 1-21 .
    18. 郝明月,闵冰冰,张新建,赵作鹏,吴晨,王欣. 基于改进YOLOv5s的矿工排队检测方法. 工矿自动化. 2023(11): 160-166 .

    Other cited types(12)

Catalog

    Article views (348) PDF downloads (470) Cited by(30)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return