Advance Search
Issue 6
Jun.  2019
Turn off MathJax
Article Contents
YANG Shenghua, RUI Feng, JIANG Weiliang, ZHANG Shihong. Development and application of full-section rock tunnelingboring machine in coal mine[J]. COAL SCIENCE AND TECHNOLOGY, 2019, (6).
Citation: YANG Shenghua, RUI Feng, JIANG Weiliang, ZHANG Shihong. Development and application of full-section rock tunnelingboring machine in coal mine[J]. COAL SCIENCE AND TECHNOLOGY, 2019, (6).

Development and application of full-section rock tunnelingboring machine in coal mine

More Information
  • Available Online: April 02, 2023
  • Published Date: June 24, 2019
  • In order to solve the problem of rock roadway rapid excavation in coal mining, the full-section rock tunnel boring machine with high efficiency and intelligence should be manufactured and developed.The coal mine full-section rock tunneling boring machine (TBM) is a kind of equipment that integrates the functions of continuous cutting, support technology, automatic positioning, wireless remote control technology, rapid loading, and mechanical dust removal and others,to realize rapid rock roadway excavation integrating of excavation, support and transportation.It can not only improve the speed of coal mine construction, but also achieve high-yield,high-efficiency, high-intensity and safe production, and create conditions for scientific mining, green mining and sustainable development of coal mine.The domestic engineering and product application of TBM in Chinese coal mine in the 1980s and the development, application and trend of TBM in coal mine in the 21st century are introduced in detail.The pipe jacking machine is the application requirement the development of coal gas co-mining, the shaft boring machine is more and more important for the construction of deep wells in coal mines, the full section rectangular boring machine will play an important role in high-efficiency and high-speed coal mining, and the conveyor is the basis for high-speed excavation.It is also pointed out that localization, coal mineralization and specialization are the development directions of coal mine TBM.The productization, systemization, serialization, automation, intelligence and marketization are the development trend.The development of coal precision mining, chemical mining and new energy is the new target.The application requirements lay the foundation for digital coal mines and smart coal mines and the coal revolution, which is of great significance to the development of deep coal resources in China.
  • Cited by

    Periodical cited type(13)

    1. 邓立军,袁金波,刘剑,尚文天. 基于SSA-LSTM的风速异常波动检测方法. 煤炭科学技术. 2024(03): 139-147 . 本站查看
    2. 张建龙,李哲远. 贵州某煤矿煤层气开发储量评价及产能预测研究. 科技资讯. 2024(12): 158-160+165 .
    3. 柳洁,田冷,刘士鑫,李宁,张佳超,平曦,马旭晴,周建,张楠. 基于复合机器算法的致密气井产能预测模型——以鄂尔多斯盆地SM区块为例. 大庆石油地质与开发. 2024(05): 69-78 .
    4. 张晓东,陈元行,高绍姝,白广芝. 基于CNN-LSTM算法的气井产量预测研究. 计算机与数字工程. 2024(08): 2367-2371+2383 .
    5. 王健,徐加放,王博闻,师浩林,薛迦文,杨刚,马腾飞. 基于GA-Elman神经网络的煤层气临界解吸压力预测. 中国石油大学学报(自然科学版). 2024(05): 138-145 .
    6. 黄力,熊先钺,王峰,孙雄伟,张艺馨,赵龙梅,石石,张稳,赵浩阳,季亮,邓琳. 深层煤层气直丛井产能影响因素确定新方法. 油气藏评价与开发. 2024(06): 990-996 .
    7. 刘大锰,王子豪,陈佳明,邱峰,朱凯,高羚杰,周柯宇,许少博,孙逢瑞. 基于ResNet残差神经网络识别的深部煤层显微组分和微裂缝分类——以鄂尔多斯盆地石炭系本溪组8~#煤层为例. 石油与天然气地质. 2024(06): 1524-1536 .
    8. 李媛,郭大立,康芸玮. 融合注意力机制的煤层气产量动态预测. 科学技术与工程. 2023(02): 550-557 .
    9. 李金平,潘军,李勇,周秦汉,赵恒平. 基于流动物质平衡理论的煤层气井定量化排采新方法. 天然气工业. 2023(06): 87-95 .
    10. 王成旺,李曙光,王玉斌,谢正龙,刘之的. 气藏产能测井预测方法研究综述. 科学技术与工程. 2023(28): 11927-11936 .
    11. 冯堃,李峰,张双源,赵雨寒,甄怀宾,刘谨嘉,祝捷. 基于生产数据的煤层气井排采评价与优化. 矿业研究与开发. 2023(12): 52-58 .
    12. 赵海峰,诸立凯,刘长松,张先凡. 基于注意力机制的CNN-GRU煤层气产能预测方法研究. 煤矿安全. 2023(12): 11-17 .
    13. 喻廷旭,金涛,罗勇,尹中山,朱韩友,田明才. 川南宜宾地区煤层气资源潜力及有利区优选. 煤炭科学技术. 2022(09): 130-137 . 本站查看

    Other cited types(9)

Catalog

    Article views (948) PDF downloads (684) Cited by(22)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return