Advance Search
WEI Hui. Analysis on instability deformation and burst liability of composite weak structures[J]. COAL SCIENCE AND TECHNOLOGY, 2021, 49(9): 32-37.
Citation: WEI Hui. Analysis on instability deformation and burst liability of composite weak structures[J]. COAL SCIENCE AND TECHNOLOGY, 2021, 49(9): 32-37.

Analysis on instability deformation and burst liability of composite weak structures

More Information
  • Available Online: April 02, 2023
  • Published Date: September 24, 2021
  • In order to control the stress concentration and energy accumulation in impact coal-rock mass,the concept of composite weak structure is proposed. Based on the strength ratio and volume of the soft-hard strata,the composite degree KC,which can pinpoint the stress concentration and energy dissipation degree of composite weak structure,is introduced. On this basis,the RFPA numerical simulation method is used to compare and analyze the instability characteristics and stress-strain curve changes in various composite weak structures. Weakening the impact tendency by composite weak structure from the point of view of burst liability is studied. The results show that strength ratio and volume size are the main factors for composite weak structure to control impact energy,the weakening stage in the process of failure and instability of composite weak structure is the unique stage of dissipating impact energy,and the dissipation degree is closely related to the KC. The KC not only change the fracture development degree,failure form and stress-strain curve of the whole structure,but KC is also inversely proportional to the maximum concentration stress,stress peak location and energy dissipation degree; the dissipative effect by the composite weak structure is verified by the elastic energy index WET and the impact energy index KE. Composite weak structure can reduce the elastic energy stored in coal-rock mass and increase the loss of dissipative energy,which can weaken the burst liability of coal-rock,reduce impact energy release and risk level,and achieve the purpose to prevent and control the rockburst.
  • Related Articles

    [1]CHEN Guanren, CHEN Junhao, LI Dongwei, ZHAO Zhenwei, YAO Zhixiong, CHEN Meiling. Study on bilateral freezing temperature field and surface frost heaving deformation of long connected aisle of underground railway[J]. COAL SCIENCE AND TECHNOLOGY, 2021, 49(4): 193-198. DOI: 10.13199/j.cnki.cst.2021.04.023
    [2]ZHANG Jiwei, LI Fangzheng, YU Xinhao, DING Hang, KONG Linghui. Research on evolution characteristics of early-age temperature-stress field of inner lining at deep frozen shaft[J]. COAL SCIENCE AND TECHNOLOGY, 2021, 49(2): 69-76. DOI: 10.13199/j.cnki.cst.2021.02.009
    [3]LIU Zhenling, ZHENG Zhongya. Simulation test study on temperature field evolution of coal spontaneous combustion in gob[J]. COAL SCIENCE AND TECHNOLOGY, 2020, 48(8): 114-120.
    [4]WANG Peng, LIN Bin, HOU Haijie, LONG Yi. Study on influence of freezing tubes layout on development law of temperature field of freezing wall[J]. COAL SCIENCE AND TECHNOLOGY, 2019, (12).
    [5]ZHAI Cheng, DONG Ruowei. Variation features of unfrozen water content of coal under low temperature freezing in uncovering coal in cross-cut[J]. COAL SCIENCE AND TECHNOLOGY, 2019, (1).
    [6]SUN Qin-shuai XU Bing-zhuang LI Kun LIU Xiao-min, . Study on temperature influence law to vertical steel bar stress in external shaft liner of mine freezing shaft[J]. COAL SCIENCE AND TECHNOLOGY, 2015, (4).
    [7]LIU Bo CHEN Yu-chao LI Dong-yang HUANG Pei-ge HUANG Mian WANG Kai-qiang, . Experiment of the Intensified Artificial Freezing on Reaming Borehole Filled with Heat Conductive Material in Local Strata[J]. COAL SCIENCE AND TECHNOLOGY, 2014, (7).
    [8]Simulation Experiment Study on Freezing Temperature Field of Mine Axial Freeing Inclined Shaft[J]. COAL SCIENCE AND TECHNOLOGY, 2013, (6).
    [9]Study on Temperature Field Distribution Law of Freezing Wall for Inclined Shaft[J]. COAL SCIENCE AND TECHNOLOGY, 2012, (12).
    [10]Analysis Calculation on Single Pipeline Freezing Temperature Field Under Non-Constant Condition of Pipe Wall Temperature[J]. COAL SCIENCE AND TECHNOLOGY, 2012, (3).
  • Cited by

    Periodical cited type(32)

    1. 刘江, 王辉. 煤矿带式输送机安全隐患视频识别技术研究与应用. 煤矿机械. 2025(07)
    2. 秦翥. 带式输送机智能化发展现状研究. 煤矿机械. 2025(01): 73-76 .
    3. 王春青,韩国庆,魏大伟,胡开庚,袁志金. 煤矿带式输送机AI视频监控系统与巡检机器人的对比研究. 煤矿机械. 2025(03): 98-100 .
    4. 方新秋,吴洋,宋扬,陈宁宁,丰宇龙,冯豪天,贺德幸,乔富康. 基于FBG传感器的带式输送机故障监测研究. 煤炭科学技术. 2025(01): 326-340 . 本站查看
    5. 董礼,程丽敏,赵博,王雁冰,商志强,朱盼盼. 基于改进模式识别的无人值守风电场群组机器人集中巡检研究. 可再生能源. 2025(03): 346-352 .
    6. 王洪磊,郭鑫,张亦凡,张俊升. 煤质煤量全面在线检测技术发展现状及应用进展. 煤炭科学技术. 2024(02): 219-237 . 本站查看
    7. 赵亮. 矿用带式输送机自动监控巡检系统分析. 现代制造技术与装备. 2024(01): 197-199 .
    8. 邵立新. 煤矿带式输送机巡检机器人关键技术研究. 机械管理开发. 2024(03): 192-193+196 .
    9. 田立勇,唐瑞,于宁,杨秀宇,秦文光. 带式输送机不停机更换托辊机器人研究与应用. 中国机械工程. 2024(05): 938-949 .
    10. 张克亮. 基于MT-CNN的矿井带式输送机输煤量检测技术. 中国矿业. 2024(06): 137-142 .
    11. 盛彬,吴利刚,张楠. 融合轻量化神经网络的矿用输送带钢芯损伤检测方法. 控制工程. 2024(07): 1254-1262 .
    12. 徐明辉. 煤矿带式输送机综合控制技术的运用研究. 内蒙古煤炭经济. 2024(13): 130-132 .
    13. 高飞. 基于改进DDNet的皮带输送机位移故障诊断研究. 计算机测量与控制. 2024(08): 47-54 .
    14. 程德强,钱建生,郭星歌,寇旗旗,徐飞翔,顾军,高亚超,赵金升. 煤矿安全生产视频AI识别关键技术研究综述. 煤炭科学技术. 2023(02): 349-365 . 本站查看
    15. 蒋社想,周馨蕊. 带式输送机智能巡检系统设计. 煤炭技术. 2023(05): 203-206 .
    16. 桂改花,苑占江. 基于改进BP-PID的带式输送机速度控制方法. 工矿自动化. 2023(05): 104-111 .
    17. 李一文,陈湘源,张海峰. 煤矿井下巡检机器人机电转换充电方法. 自动化与仪表. 2023(06): 39-44 .
    18. 常健. 面向煤矿巡检任务的新型仿生爬线机器人关键技术. 煤矿安全. 2023(06): 244-248 .
    19. 秦伟,陈湘源,张海峰. 基于多轮驱动同步控制系统的矿用巡检机器人设计. 煤矿机械. 2023(08): 1-5 .
    20. 魏学平. 皮带运输机巡检机器人数据处理系统设计与实现. 机械工程与自动化. 2023(04): 144-146 .
    21. 范高鹏. 带式输送机自动监控巡检系统的设计应用. 江西煤炭科技. 2023(03): 238-240 .
    22. 蔺恩忠. 煤矿带式输送机轴承监测诊断系统应用研究. 科技资讯. 2023(16): 62-65 .
    23. 吴珊. 带式输送机托辊性能的分析及优化. 机械管理开发. 2023(10): 43-45 .
    24. 胡金良. 基于带式输送机的智能巡检研究. 中国安全科学学报. 2023(S1): 85-90 .
    25. 张立峰,武小芳. 基于PAC的输煤皮带巡检机器人设计与研究. 中国设备工程. 2023(23): 198-200 .
    26. 李洁. 煤矿多级带式输送机系统的节能控制研究. 机械管理开发. 2023(12): 202-204 .
    27. 张海峰. 煤矿挂轨式巡检机器人爬坡助力装置. 自动化与仪表. 2022(10): 48-51 .
    28. 王鹏,赵红菊. 煤矿场景下基于RGBD的视觉导航技术. 煤矿安全. 2022(11): 136-140 .
    29. 张超力,武国旺,孟超,王志红,刘红欣,梁国杰,霍斌洋,薛长站,苏周,梅东升. 输煤皮带巡检机器人系统上位机软件设计与实现. 能源与节能. 2022(12): 183-185 .
    30. 毛清华,李世坤,胡鑫,薛旭升,姚丽杰. 基于改进YOLOv7的煤矿带式输送机异物识别. 工矿自动化. 2022(12): 26-32 .
    31. 樊琛,王毅. 基于浮游式变压器巡检机器人系统设计与试验. 粘接. 2022(12): 174-177+191 .
    32. 刘寿恩. 露天输送带智能巡检系统设计. 数字技术与应用. 2021(11): 199-201 .

    Other cited types(8)

Catalog

    Article views (163) PDF downloads (321) Cited by(40)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return