Advance Search
BAI Jianping, HAO Chunsheng, YANG Changyong, YAO Jinbao, ZHOU Jianbin, LI Shengqi, SHI Xiaohong. Study on the 3D distribution law of overlying rock cracks in fully mechanized mining face of Xinjing coal mine[J]. COAL SCIENCE AND TECHNOLOGY, 2020, 48(11): 106-112.
Citation: BAI Jianping, HAO Chunsheng, YANG Changyong, YAO Jinbao, ZHOU Jianbin, LI Shengqi, SHI Xiaohong. Study on the 3D distribution law of overlying rock cracks in fully mechanized mining face of Xinjing coal mine[J]. COAL SCIENCE AND TECHNOLOGY, 2020, 48(11): 106-112.

Study on the 3D distribution law of overlying rock cracks in fully mechanized mining face of Xinjing coal mine

More Information
  • Available Online: April 02, 2023
  • Published Date: November 24, 2020
  • Understanding the distribution law of overburden cracks in high-gas coal seams is of great significance for rationally arranging high-drainage roadways or directional drilling positions and improving gas drainage effects. Taking the 3213 working face of Xinjing Mine of Yangmei Group as the engineering background, using similar simulation and CDEM three-dimensional discrete element simulation and other methods to study the overburden movement and crack development law after the recovering of the working face, the basic top breaking and periodic breaking of the working face as well as the distance, the development height and evolution of overlying rock fractures were obtained. The results show that the first weighting interval of 3213 working face was 30 m and periodic weighting interval was 10~15m;the straddle overburden was a "trapezoid" structure with a wide bottom and a narrow top; periodic pressure changes, ranging from 55° to 65°; according to similar simulated fracture observations and numerical simulation of the three-dimensional displacement distribution, it is determined that the height of the collapse zone was 8.6 m, which was 3.4 times of the mining height, and the fracture zone height was 25.7m which was 10.3 times of the mining height. The fracture development above the working face has a strong periodicity, and the fracture does not extend upward with the basic top fracture rising in a step shape, and the fracture is no longer extending upward after it reaches a certain height, and the upper cracks were all separated cracks, and the final crack zone was formed. It was distributed in a three-dimensional ring shape with an oblique trapezoid in cross section., the outer ring of the bottom face was 9 m away from the boundary of the gob, the bottom surface was 20 m wide, the top surface was 25 m wide, and the height was 10~20 m above the roof of the coal seam. Determining the three-dimensional position and range of the fracture development ring is of great significance to gas control in the working face and the gob. High drainage or drainage boreholes should be arranged at the top of the fracture ring as much as possible to keep the roadway or borehole intact and able to achieve the best drainage effect.
  • Related Articles

    [1]LI Huaizhan, SUN Jingchao, GUO Guangli, TANG Chao, ZHENG Hui, ZHANG Liangui, MENG Fanzhen. Evolution characteristics and development height prediction method of water-conducting crack zone in thick weak cemented overlying strata[J]. COAL SCIENCE AND TECHNOLOGY, 2025, 53(2): 289-300. DOI: 10.12438/cst.2023-1931
    [2]WU Jianhong, PAN Junfeng, GAO Jiaming, YAN Yaodong, MA Hongyuan. Research on prediction of the height of water-conducting fracture zone in Huanglong Jurassic Coalfield[J]. COAL SCIENCE AND TECHNOLOGY, 2023, 51(S1): 231-241. DOI: 10.13199/j.cnki.cst.2023-0151
    [3]ZHAO Kaigong, ZHANG Xiaolei, LI Zhangming, CHEN Gang, GAI Yongling. Numerical simulation on prediction model of risk range of typical gas release through small holes[J]. COAL SCIENCE AND TECHNOLOGY, 2023, 51(3): 281-290. DOI: 10.13199/j.cnki.cst.2022-1948
    [4]MA Li, ZHANG Jianguo, ZHANG Leiming, TU Yuhang, WU Jing, LIAN Kaiyuan. Study on prediction of blast casting results in open-pit minebased on IPSO-ELM model[J]. COAL SCIENCE AND TECHNOLOGY, 2021, 49(9): 69-75.
    [5]MA Li, WEI Ze, ZOU Li, YI Xin, HE Chengmao. Influence factors and prediction of critical parameters of spontaneous combustion of pulverized coal[J]. COAL SCIENCE AND TECHNOLOGY, 2021, 49(4): 206-212. DOI: 10.13199/j.cnki.cst.2021.04.025
    [6]SONG Guoliang, YANG Xueting, YANG Shaobo. Study on prediction model of alkali metal contamination characteristics during high alkali coal combustion[J]. COAL SCIENCE AND TECHNOLOGY, 2020, 48(2).
    [7]LIU Peng WEI Huizi, JING Jiangbo, YANG Yanyan, . Predicting technology of gas emission quantity in coal mine based on enhanced CART regression algorithm[J]. COAL SCIENCE AND TECHNOLOGY, 2019, (11).
    [8]QI Qingjie, ZHAO Youxin, LI Xinghua, ZHOU Xinhua. Prediction model of CO emission volume from goaf[J]. COAL SCIENCE AND TECHNOLOGY, 2018, (2).
    [9]Zhu Lingqi Shao Jingjing Wang Fusheng, . Criterion of initial coal spontaneous combustion with prediction model of concentration ratio of CO2 and CO[J]. COAL SCIENCE AND TECHNOLOGY, 2015, (7).
    [10]MENG Zhao-ping GUO Yan-sheng ZHANG Jji-xing, . Application and Prediction Model of Coalbed Methane Content Based on Logging Parameters[J]. COAL SCIENCE AND TECHNOLOGY, 2014, (6).
  • Cited by

    Periodical cited type(19)

    1. 池小楼,韦忠华,杨科,王春梅,王同. 大倾角煤层下分层复采破碎顶板注浆改性试验研究. 煤炭科学技术. 2025(02): 27-40 . 本站查看
    2. 解盘石,黄宝发,伍永平,罗生虎,朱明建,易磊磊,徐辉,陈建杰. 大倾角工作面覆岩三维破断运移演化规律. 煤炭科学技术. 2025(02): 12-26 . 本站查看
    3. 王萌. 急倾斜特厚煤层水平分段工作面顶板应力演化及破坏机理研究. 煤炭工程. 2025(04): 101-107 .
    4. 孙振敏,杨志良. 急倾斜煤层水平分段开采顶板应力演化规律数值模拟研究. 煤炭技术. 2024(01): 75-79 .
    5. 伍永平,郎丁,贠东风,解盘石,王红伟,高喜才,罗生虎,曾佑富,吕文玉,张艳丽,胡博胜,皇甫靖宇,周邦远,黄国春,王丽,李俊明,刘斌. 我国大倾角煤层开采技术变革与展望. 煤炭科学技术. 2024(01): 25-51 . 本站查看
    6. 高利军,晋发东,梁东宇,杨文斌,汤业鹏,王同. 大倾角采场围岩应力分布及矸石充填特征的倾角效应研究. 工矿自动化. 2024(03): 142-150 .
    7. 王红伟,焦建强,伍永平,蒋宝林,罗生虎,王同. 急倾斜短壁综放采场围岩采动应力演化规律. 采矿与安全工程学报. 2024(03): 462-471 .
    8. 舒梅. 山体下急倾斜煤层合理区段煤柱留设研究. 煤炭与化工. 2024(04): 18-24 .
    9. 李建东. 急倾斜煤层大采高工作面回采工艺优化研究. 矿业装备. 2024(06): 42-44 .
    10. 李腾,姜永东,刘华君,邹勇,桂涛,陈飞. 急倾斜大采高综采工作面沿空留巷技术研究. 煤炭科学技术. 2024(S2): 1-9 . 本站查看
    11. 纪鹏伟. 灵泉煤矿10594工作面急倾斜煤层采煤工艺研究. 煤矿现代化. 2023(01): 58-61 .
    12. 伍永平,解盘石,贠东风,王红伟,罗生虎,高喜才,郎丁,胡博胜,闫壮壮,王同. 大倾角层状采动煤岩体重力-倾角效应与岩层控制. 煤炭学报. 2023(01): 100-113 .
    13. 贠东风,李浩男,伍永平,黄正平,杨磷. 大倾角煤层综采产效要素系统分析与促产提效精准策略研究. 煤炭科学技术. 2023(04): 1-10 . 本站查看
    14. 王正帅. 急倾斜煤层分段开采下部煤岩体应力及位移演化规律. 科学技术与工程. 2023(19): 8133-8139 .
    15. 李树刚,刘李东,赵鹏翔,林海飞,卓日升. 倾斜厚煤层卸压瓦斯靶向区辨识及抽采关键技术. 煤炭科学技术. 2023(08): 105-115 . 本站查看
    16. 马志辉. 急倾斜煤层综合采煤设备“三机”配套优化研究. 现代制造技术与装备. 2023(11): 1-3 .
    17. 王圣志,袁永,朱成,袁超峰,钟慧伟. 仰斜综放开采顶煤运移规律及合理放煤参数研究. 煤炭科学技术. 2022(05): 104-109 . 本站查看
    18. 常博,刘旭东,张传明,贾冲,闫瑞兵,任杰. 急倾斜煤岩互层巷道变形特征及机理研究. 煤炭科学技术. 2022(08): 40-49 . 本站查看
    19. 吴艳,刘旭东,王海军,王相业,吴敏杰,马良. 急倾斜煤层隐蔽致灾因素探查及防治技术. 中国煤炭. 2022(S2): 17-27 .

    Other cited types(4)

Catalog

    Article views (140) PDF downloads (278) Cited by(23)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return