Advance Search
LU Zhengxiong, GUO Wei, ZHANG Fan, ZHANG Chuanwei, ZHAO Shuanfeng, YANG Manzhi, WANG Yuan. Collaborative control system architecture and key technologies of fully-mechanized mining equipment based on data drive[J]. COAL SCIENCE AND TECHNOLOGY, 2020, 48(7).
Citation: LU Zhengxiong, GUO Wei, ZHANG Fan, ZHANG Chuanwei, ZHAO Shuanfeng, YANG Manzhi, WANG Yuan. Collaborative control system architecture and key technologies of fully-mechanized mining equipment based on data drive[J]. COAL SCIENCE AND TECHNOLOGY, 2020, 48(7).

Collaborative control system architecture and key technologies of fully-mechanized mining equipment based on data drive

More Information
  • Available Online: April 02, 2023
  • Published Date: July 24, 2020
  • In order to solve the problem of cooperative control of mining equipment,which is one of the key technical problems in intelligent fully-mechanized coal mining face,a human-like intelligent cooperative control model of fully-mechanized coal mining equipment based on data drive was proposed,focusing on the collaborative control of intelligent fully-mechanized mining equipment under the background of big data key technology theories and methods such as knowledge self-learning, mining behavior self-decision, and distributed cooperative self-operation.It includes:analyzing the data characteristics of the intelligent fully-mechanized mining system from the perspective of data application, and clarifying the three data characteristics of the intelligent fully-mechanized mining system: ubiquitous perception(data acquisition), information fusion(data mining)and intelligent control(data decision-making);the cooperative control framework of fully-mechanized mining equipment oriented to the representation of decision-making process of experienced operators was constructed.A method for the evolution of fully-mechanized mining equipment operating state based on extended finite state machine and a learning method for the movement behavior mode of fully-mechanized mining equipment based on multi-marker decision information system was proposed to realize dynamic acquisition of behavior decision knowledge of intelligent fully-mechanized mining equipment driven by data.This paper also studied the decision knowledge partition method for the behavior mode class of fully-mechanized mining equipment and the decision behavior hybrid reasoning method based on CBR and RBR fusion to realize the autonomous decision-making of the intelligent fully-mechanized mining equipment’s behavior.The characterization method of the driver’s control strategy of fully-mechanized mining equipment under the manual control mode was discussed, and the “Three Machines”simulation of fully-mechanized mining with self-learning, self-decision and self-adaptation of working conditions was developed by human intelligent cooperative control method;The logic of parallel fully-mechanized mining technology based on parallel system theory was given, and the experimental research method of cooperative control of fully-mechanized mining equipment was provided.The above infrastructure and mathematical model can provide reference for solving the cooperative control problem of fully mechanized mining system under the big data environment.
  • Related Articles

    [1]TAO Chuanqi, WANG Yanbin, NI Xiaoming, HAN Jie, LIU Shenglin. Shale gas geological characteristics and exploration potential of lower permian Taiyuan Formation in Linxing Area[J]. COAL SCIENCE AND TECHNOLOGY, 2023, 51(5): 140-148. DOI: 10.13199/j.cnki.cst.2021-1073
    [2]ZHANG Manting, FU Wei, JIANG Bingren, GAO Wei, DENG Ende. Shale gas reservoir characteristics and exploration potential analysis of Longtan Formation of the upper Permian Series in Qianbei Coalfield[J]. COAL SCIENCE AND TECHNOLOGY, 2022, 50(8): 133-139.
    [3]YUAN Yuyang, LI Zhuopei, ZHONG Mingyang, WANG Ying. Pore structure characteristics of Taiyuan Formation coal measuresshale in south central Qinshui Basin[J]. COAL SCIENCE AND TECHNOLOGY, 2021, 49(9): 184-192.
    [4]LI Bobo, CHEN Shuai, YANG Kang, LI Jianhua, REN Chonghong. Study on characteristics of shale pore structure and water seepage evolution laws in northern Guizhou[J]. COAL SCIENCE AND TECHNOLOGY, 2020, 48(2).
    [5]TAN Xuan. Study on enrichment characteristics of trace elements and genesis of symbiotic relationship of coal in Datong Coalfield[J]. COAL SCIENCE AND TECHNOLOGY, 2019, (11).
    [6]ZHANG Peng, HUANG Yuqi, YANG Junwei, LIU Hongyang. Study on characteristics of shale reservoirs from Longtan Formation in northwest Guizhou[J]. COAL SCIENCE AND TECHNOLOGY, 2019, (4).
    [7]CHEN Jie, YI Tongsheng, JIN Jun. Accumulation characteristics and exploration development revelation on shale gas in Jiusi Formation of Carboniferous in Qianxi[J]. COAL SCIENCE AND TECHNOLOGY, 2018, (8).
    [8]Wang Qiong Xu Hao Tang Dazhen Tao Shu Zhou Dongsheng Zhang Mengying, . Characteristics of mineral compositions of shale gas reservoir of Longtan Formation of upper Permian in Meishan Area of Zhejiang[J]. COAL SCIENCE AND TECHNOLOGY, 2017, (7).
    [9]Liang Zhengzhong Yu Tianhong. Research status and exploration enlightenment on over-pressure and enrichment shale gas in North America[J]. COAL SCIENCE AND TECHNOLOGY, 2016, (10).
    [10]LIU Da-meng LI Jun-qian LI Zi-nan, . Research on Enrichment and Accumulation Mechanism of Shale Gas and Its Formation Conditions in China[J]. COAL SCIENCE AND TECHNOLOGY, 2013, (9).
  • Cited by

    Periodical cited type(24)

    1. 张小荣,胡志伟,鲍久圣,杨文政,王飞,唐彬展,张磊. 无轨胶轮车防爆柴油机尾气净化装置研制及试验. 矿业安全与环保. 2025(02): 164-171+178 .
    2. 梁玉芳. 煤矿井下无人化无轨辅助运输路径规划技术研究. 煤炭工程. 2025(04): 88-92 .
    3. 武斌,胡开庚,袁志金,陈安国,张琳琪,王宝来. 矿井机车运输智能监控平台设计与应用. 煤炭技术. 2024(02): 249-252 .
    4. 唐利山,罗武军,栾梦涛,毕国强,陈龙龙. 煤矿机电设备中自动化技术的应用探究. 中国设备工程. 2024(04): 215-218 .
    5. 王敏. 煤矿主运输系统胶带机保护自动化及发展的探讨. 内蒙古煤炭经济. 2024(06): 40-42 .
    6. 祖岱,王帅. 基于物联网技术的煤矿无轨胶轮车远程监控与管理系统. 大众标准化. 2024(16): 190-192 .
    7. 韩燕南,高文,贺耀宜. 基于精确定位技术的煤矿井下小型车避让预警方法. 煤矿安全. 2024(12): 243-249 .
    8. 江帆,康静静,皇行涛,朱真才,周公博,彭玉兴. 基于多编码器与惯导融合的无轨胶轮车定位方法. 煤炭科学技术. 2024(S2): 284-293 . 本站查看
    9. 郭玉龙,李荣孝,吴晶星. 基于精确定位的煤矿车辆智能运输管理系统研究. 中国新通信. 2023(01): 55-57 .
    10. 韩燕南. 基于UWB技术的无轨胶轮车行车安全距离检测预警. 煤矿安全. 2023(07): 236-242 .
    11. 李宗伟. 基于非视距误差抑制的矿井轨道机车定位方法研究. 工矿自动化. 2023(07): 75-82 .
    12. 孙晓辉. 新形势下煤矿辅助运输关键技术与装备分析. 内蒙古煤炭经济. 2023(09): 139-141 .
    13. 袁鑫. 煤矿辅助运输的技术要点与发展研究. 内蒙古煤炭经济. 2023(10): 166-168 .
    14. 张琪. 防爆铅酸蓄电池寿命影响因素试验研究. 煤矿机械. 2023(10): 52-54 .
    15. 韩燕南. 基于UWB定位技术的无轨胶轮车路径偏离报警. 煤矿安全. 2023(09): 218-226 .
    16. 阮进林,孙秀斌,薛志超,王万贵. 井工煤矿胶轮运输装备智能化技术研究与应用. 矿山机械. 2023(12): 16-20 .
    17. 包翔宇,单成伟,吴岩明. 基于毫米波雷达技术的煤矿胶轮车管控系统. 煤矿机电. 2023(05): 12-17 .
    18. 白鹏波. 煤矿智能无轨辅助运输技术存在问题及应用前景. 内蒙古煤炭经济. 2023(24): 151-153 .
    19. 侯刚,王国法,薛忠新,任怀伟,欧阳敏,王峰,袁晓明,杨斐文,时洪宇,李济洋,高原. 煤矿辅助运输自动驾驶关键技术与装备. 采矿与岩层控制工程学报. 2022(03): 1-13 .
    20. 陈晓晶. 井工煤矿运输系统智能化技术现状及发展趋势. 工矿自动化. 2022(06): 6-14+35 .
    21. 包翔宇,单成伟,吴岩明. 基于UWB精确定位的辅助运输交通灯自动控制系统. 工矿自动化. 2022(06): 100-111 .
    22. 刘昕,付元,李晨鑫. 5G特性在智慧矿山中的应用研究. 工矿自动化. 2022(10): 136-141 .
    23. 梁占泽,马平,赵俊达,王铮,刘涛. 煤矿井下智能无轨辅助运输技术研究. 煤炭工程. 2022(S1): 6-11 .
    24. 张立辉. 上湾煤矿基于5G全矿井绿色智能辅助运输系统研究与实践. 中国煤炭. 2021(S1): 79-86 .

    Other cited types(6)

Catalog

    Article views (659) PDF downloads (693) Cited by(30)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return