Advance Search
Issue 6
Jun.  2013
Turn off MathJax
Article Contents
Study on Mine Pressure Bumping Prevention and Control Technology of Coal Mining Face in Seam Island Based on Defect Method[J]. COAL SCIENCE AND TECHNOLOGY, 2013, (6).
Citation: Study on Mine Pressure Bumping Prevention and Control Technology of Coal Mining Face in Seam Island Based on Defect Method[J]. COAL SCIENCE AND TECHNOLOGY, 2013, (6).

Study on Mine Pressure Bumping Prevention and Control Technology of Coal Mining Face in Seam Island Based on Defect Method

More Information
  • Available Online: April 02, 2023
  • Published Date: June 24, 2013
  • According to the problems of the mine pressure bumping accident frequently occurred in coal mining face in the seam island, the defect method was app lied to prevent and control the mine pressure bumping in the high stress region of the coal mining face in the seam island, the artificial defect mass was applied to migr ate the stress field of the coal mining face in the seam island, the energy continuously and slowly releasing could form a pressure releasing and protection zone during t he stress filed migration process and thus the danger of the mine pressure bumping could be reduced.The pressure released gateway, blasting boreholes, large diamet er boreholes and other artificial defect technical method applied could effectively make the stress migration forward to the deep of the coal mining face and could have an energy released effect.An active stress monitoring and measuring technology was applied to the effect inspection.The observation results showed that based on the artificial defect mass pressure pre-release, the pressure was decreased and migratied efficiently, the coal mining face didnOt appear the phenomenon of stress accumul ation.
  • Cited by

    Periodical cited type(18)

    1. 李阳. 影视拍摄机器人中基于目标检测信息的跟踪算法应用研究. 自动化与仪器仪表. 2025(06)
    2. 毛清华,苏毅楠,贺高峰,翟姣,王荣泉,尚新芒. 基于改进YOLOv8模型的井下人员入侵带式输送机危险区域智能识别. 工矿自动化. 2025(01): 11-20+103 .
    3. 李小军,赵明炀,李淼. 基于深度学习的钻孔冲煤量智能识别方法. 煤田地质与勘探. 2025(01): 257-270 .
    4. 路洋,董立红,叶鸥. 基于自适应链接优化的井下行人抗遮挡跟踪方法研究. 工矿自动化. 2025(02): 65-75+137 .
    5. 柳小波,范立鹏,秦丽杰,王连成,张兴帆. 机器视觉技术在矿山行业的应用现状与展望. 有色金属(矿山部分). 2025(02): 1-15 .
    6. 唐俊飞,邢海龙,李溯,张涛涛,刘恒,姚诗雨. 结合改进CNN与自注意力机制的煤矿轮式机器人目标检测技术. 煤矿安全. 2025(03): 224-232 .
    7. 毛清华,翟姣,胡鑫,苏毅楠,薛旭升. 煤矿综采工作面人员入侵危险区域智能识别方法. 煤炭学报. 2025(02): 1347-1361 .
    8. 井晶,高宇蒙,赵作鹏,闵冰冰. 一种改进的Yolov5s煤矿井下人员计数模型. 计算机仿真. 2025(04): 525-530+551 .
    9. 张宇豪,肖新宇,朱梓润,訾梦超,廖金湘. 一种基于DeepSORT的逆透视车流量检测方法. 轻工科技. 2024(01): 98-100 .
    10. 王洪磊,郭鑫,张亦凡,张俊升. 煤质煤量全面在线检测技术发展现状及应用进展. 煤炭科学技术. 2024(02): 219-237 . 本站查看
    11. 邵小强,李鑫,杨永德,原泽文,杨涛. 基于改进YOLOv7的矿井人员检测算法. 电子科技大学学报. 2024(03): 414-423 .
    12. 王茂森,鲍久圣,章全利,杨阳,袁晓明,阴妍,张可琨,葛世荣. 煤矿井下单轨吊无人驾驶目标识别算法与轨道接缝检测方法. 煤炭学报. 2024(S1): 457-471 .
    13. 狄靖尧,杨超宇. 基于改进Transformer的井下人员检测算法. 科学技术与工程. 2024(26): 11188-11194 .
    14. 解北京,李恒,董航,栾铮,张奔,李晓旭. 基于多尺度特征融合井下猴车载人状态的智能识别算法与应用. 煤炭科学技术. 2024(12): 272-286 . 本站查看
    15. 孙林,陈圣,姚旭龙,张艳博,陶志刚,梁鹏. 煤矿井下残缺信息的多目标检测方法研究. 煤炭科学技术. 2024(S2): 211-220 . 本站查看
    16. 范伟强,王雪瑾,张颖慧,李晓宇. 改进YOLOv7和DeepSORT的井下人员检测与跟踪算法. 煤炭科学技术. 2024(S2): 343-355 . 本站查看
    17. 程德强,寇旗旗,江鹤,徐飞翔,宋天舒,王晓艺,钱建生. 全矿井智能视频分析关键技术综述. 工矿自动化. 2023(11): 1-21 .
    18. 郝明月,闵冰冰,张新建,赵作鹏,吴晨,王欣. 基于改进YOLOv5s的矿工排队检测方法. 工矿自动化. 2023(11): 160-166 .

    Other cited types(12)

Catalog

    Article views (1196) PDF downloads (808) Cited by(30)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return