Advance Search
WANG Gang, LI Huaixing, CHANG Bo. Accurate determination of effective gas extraction range of gas drilling holes in steeply inclined coal seams[J]. COAL SCIENCE AND TECHNOLOGY, 2021, 49(5): 91-99.
Citation: WANG Gang, LI Huaixing, CHANG Bo. Accurate determination of effective gas extraction range of gas drilling holes in steeply inclined coal seams[J]. COAL SCIENCE AND TECHNOLOGY, 2021, 49(5): 91-99.

Accurate determination of effective gas extraction range of gas drilling holes in steeply inclined coal seams

More Information
  • Available Online: April 02, 2023
  • Published Date: May 24, 2021
  • In order to clarify the effective extraction range of gas drainage boreholes in steeply inclined coal seams and reasonably arrange the locations of drainage boreholes, taking Wudong Coal Mine No.43 coal seam as an example, and numerical simulations were used to obtain the effective drainage range of gas drainage holes in steeply inclined coal seams. According to the law of time change, the gas percolation unit model around the steeply inclined coal seam was established, the mathematical model of the effective drainage range of the steeply inclined coal seam was deduced, and the numerical simulation and mathematical model were verified by the field measurement results, and the average relative error rate was small (both are less than 5%). Numerical simulation results show that: compared with the effective gas drainage range of conventional coal seam boreholes, the effective drainage distance and drainage time of steep coal seams have a non-linear relationship; during the drainage process, the effective drainage range increases with time. The expansion speed is different in different directions of the borehole plane, and the effective drainage area becomes an elliptical area after finally stabilizing. Through the analysis of the force state on the coal wall around the boreholes in steeply inclined coal seams, it is believed that the main reason for the difference in the effective extraction range is that the emergence of the boreholes has changed the original distribution of ground stress, and the stability of the coal wall around the drilling was impaired, the physical and mechanical properties of the coal in a certain range nearby change.In addition, the redistribution of ground stress also has a certain impact on the permeability of the coal seam around the borehole. In order to quantitatively study the development trend of the effective drainage range on the two-dimensional section perpendicular to the borehole with time, the mathematical model of the effective extraction range of the steep coal seam was used to obtain the expression of the effective extraction range of the steep coal seam, and the extraction in different directions was analyzed. The degree of difference caused by the expansion speed has a certain guiding effect on the field application of gas drainage boreholes in steeply inclined coal seams.
  • Related Articles

    [1]TAO Chuanqi, WANG Yanbin, NI Xiaoming, HAN Jie, LIU Shenglin. Shale gas geological characteristics and exploration potential of lower permian Taiyuan Formation in Linxing Area[J]. COAL SCIENCE AND TECHNOLOGY, 2023, 51(5): 140-148. DOI: 10.13199/j.cnki.cst.2021-1073
    [2]ZHANG Manting, FU Wei, JIANG Bingren, GAO Wei, DENG Ende. Shale gas reservoir characteristics and exploration potential analysis of Longtan Formation of the upper Permian Series in Qianbei Coalfield[J]. COAL SCIENCE AND TECHNOLOGY, 2022, 50(8): 133-139.
    [3]YUAN Yuyang, LI Zhuopei, ZHONG Mingyang, WANG Ying. Pore structure characteristics of Taiyuan Formation coal measuresshale in south central Qinshui Basin[J]. COAL SCIENCE AND TECHNOLOGY, 2021, 49(9): 184-192.
    [4]LI Bobo, CHEN Shuai, YANG Kang, LI Jianhua, REN Chonghong. Study on characteristics of shale pore structure and water seepage evolution laws in northern Guizhou[J]. COAL SCIENCE AND TECHNOLOGY, 2020, 48(2).
    [5]TAN Xuan. Study on enrichment characteristics of trace elements and genesis of symbiotic relationship of coal in Datong Coalfield[J]. COAL SCIENCE AND TECHNOLOGY, 2019, (11).
    [6]ZHANG Peng, HUANG Yuqi, YANG Junwei, LIU Hongyang. Study on characteristics of shale reservoirs from Longtan Formation in northwest Guizhou[J]. COAL SCIENCE AND TECHNOLOGY, 2019, (4).
    [7]CHEN Jie, YI Tongsheng, JIN Jun. Accumulation characteristics and exploration development revelation on shale gas in Jiusi Formation of Carboniferous in Qianxi[J]. COAL SCIENCE AND TECHNOLOGY, 2018, (8).
    [8]Wang Qiong Xu Hao Tang Dazhen Tao Shu Zhou Dongsheng Zhang Mengying, . Characteristics of mineral compositions of shale gas reservoir of Longtan Formation of upper Permian in Meishan Area of Zhejiang[J]. COAL SCIENCE AND TECHNOLOGY, 2017, (7).
    [9]Liang Zhengzhong Yu Tianhong. Research status and exploration enlightenment on over-pressure and enrichment shale gas in North America[J]. COAL SCIENCE AND TECHNOLOGY, 2016, (10).
    [10]LIU Da-meng LI Jun-qian LI Zi-nan, . Research on Enrichment and Accumulation Mechanism of Shale Gas and Its Formation Conditions in China[J]. COAL SCIENCE AND TECHNOLOGY, 2013, (9).
  • Cited by

    Periodical cited type(24)

    1. 张小荣,胡志伟,鲍久圣,杨文政,王飞,唐彬展,张磊. 无轨胶轮车防爆柴油机尾气净化装置研制及试验. 矿业安全与环保. 2025(02): 164-171+178 .
    2. 梁玉芳. 煤矿井下无人化无轨辅助运输路径规划技术研究. 煤炭工程. 2025(04): 88-92 .
    3. 武斌,胡开庚,袁志金,陈安国,张琳琪,王宝来. 矿井机车运输智能监控平台设计与应用. 煤炭技术. 2024(02): 249-252 .
    4. 唐利山,罗武军,栾梦涛,毕国强,陈龙龙. 煤矿机电设备中自动化技术的应用探究. 中国设备工程. 2024(04): 215-218 .
    5. 王敏. 煤矿主运输系统胶带机保护自动化及发展的探讨. 内蒙古煤炭经济. 2024(06): 40-42 .
    6. 祖岱,王帅. 基于物联网技术的煤矿无轨胶轮车远程监控与管理系统. 大众标准化. 2024(16): 190-192 .
    7. 韩燕南,高文,贺耀宜. 基于精确定位技术的煤矿井下小型车避让预警方法. 煤矿安全. 2024(12): 243-249 .
    8. 江帆,康静静,皇行涛,朱真才,周公博,彭玉兴. 基于多编码器与惯导融合的无轨胶轮车定位方法. 煤炭科学技术. 2024(S2): 284-293 . 本站查看
    9. 郭玉龙,李荣孝,吴晶星. 基于精确定位的煤矿车辆智能运输管理系统研究. 中国新通信. 2023(01): 55-57 .
    10. 韩燕南. 基于UWB技术的无轨胶轮车行车安全距离检测预警. 煤矿安全. 2023(07): 236-242 .
    11. 李宗伟. 基于非视距误差抑制的矿井轨道机车定位方法研究. 工矿自动化. 2023(07): 75-82 .
    12. 孙晓辉. 新形势下煤矿辅助运输关键技术与装备分析. 内蒙古煤炭经济. 2023(09): 139-141 .
    13. 袁鑫. 煤矿辅助运输的技术要点与发展研究. 内蒙古煤炭经济. 2023(10): 166-168 .
    14. 张琪. 防爆铅酸蓄电池寿命影响因素试验研究. 煤矿机械. 2023(10): 52-54 .
    15. 韩燕南. 基于UWB定位技术的无轨胶轮车路径偏离报警. 煤矿安全. 2023(09): 218-226 .
    16. 阮进林,孙秀斌,薛志超,王万贵. 井工煤矿胶轮运输装备智能化技术研究与应用. 矿山机械. 2023(12): 16-20 .
    17. 包翔宇,单成伟,吴岩明. 基于毫米波雷达技术的煤矿胶轮车管控系统. 煤矿机电. 2023(05): 12-17 .
    18. 白鹏波. 煤矿智能无轨辅助运输技术存在问题及应用前景. 内蒙古煤炭经济. 2023(24): 151-153 .
    19. 侯刚,王国法,薛忠新,任怀伟,欧阳敏,王峰,袁晓明,杨斐文,时洪宇,李济洋,高原. 煤矿辅助运输自动驾驶关键技术与装备. 采矿与岩层控制工程学报. 2022(03): 1-13 .
    20. 陈晓晶. 井工煤矿运输系统智能化技术现状及发展趋势. 工矿自动化. 2022(06): 6-14+35 .
    21. 包翔宇,单成伟,吴岩明. 基于UWB精确定位的辅助运输交通灯自动控制系统. 工矿自动化. 2022(06): 100-111 .
    22. 刘昕,付元,李晨鑫. 5G特性在智慧矿山中的应用研究. 工矿自动化. 2022(10): 136-141 .
    23. 梁占泽,马平,赵俊达,王铮,刘涛. 煤矿井下智能无轨辅助运输技术研究. 煤炭工程. 2022(S1): 6-11 .
    24. 张立辉. 上湾煤矿基于5G全矿井绿色智能辅助运输系统研究与实践. 中国煤炭. 2021(S1): 79-86 .

    Other cited types(6)

Catalog

    Article views (344) PDF downloads (618) Cited by(30)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return