Advance Search
WANG Sujian, JIN Shengyao. Analysis study on selective preference of recovery mining project for island-like working face[J]. COAL SCIENCE AND TECHNOLOGY, 2021, 49(9): 9-16.
Citation: WANG Sujian, JIN Shengyao. Analysis study on selective preference of recovery mining project for island-like working face[J]. COAL SCIENCE AND TECHNOLOGY, 2021, 49(9): 9-16.

Analysis study on selective preference of recovery mining project for island-like working face

More Information
  • Available Online: April 02, 2023
  • Published Date: September 24, 2021
  • Island working face is a technical problem of coal mining in China,strong ground pressure behavior is significant characteristic of island working face,the island-like working face in Xiashijie Coal Mine stopped mining and closed working face due to strong mining pressure behavior. In order to realize the beneficial recycling of resources,extend the remaining service life of the mine,and realize the safe re-mining of the island-like working face,on the basis of comprehensive site survey,numerical simulation calculation and theoretical analysis,this paper summarizes and analyzes the dynamic pressure behavior characteristics and its mechanism of No.220 working face,and puts forward two kinds of transformation schemes of No.220 working face expansion and contraction.The results show that the dynamic pressure behavior of No.220 working face is closely related to periodic roof weighting and roof activity,and the comprehensive effects of super-high stress,upper multi-layer thick and hard rock,wide coal pillar and frequent coal blasting are the root of strong mining pressure behavior. The optimal re-mining schemes is determined as expanding face reconstruction(15 m in internal displacement Goaf 2301) and reducing face reconstruction(shorten by 50 m). By comprehensively comparing the overall risks and economic benefits of the two mining schemes,it is suggested that the fully mechanized top coal caving mining should be carried out in the No.220 working face with a reduced face of 50 m,and a simple machine head and a single motor at the tail should be installed,and whether to replace the transition support and install the regular machine head and electric machine should be decided according to the situation.
  • Related Articles

    [1]YANG Junzhe, LIU Qianjin. Analysis and measured of strata behavior law and mechanism of 8.8 m ultra- high mining height working face[J]. COAL SCIENCE AND TECHNOLOGY, 2020, 48(1).
    [2]XIAO Jiang, WU Jianjun, SHAO Yawu, YANG Hao. Similar simulation study on mine pressure behavior law of 8.5 m high mining face[J]. COAL SCIENCE AND TECHNOLOGY, 2019, (3).
    [3]ZHANG Lihui LI Nannan, . Study on strata behavior law of fully-mechanized mining face with 8 m large mining height[J]. COAL SCIENCE AND TECHNOLOGY, 2017, (11).
    [4]Yang Junzhe. Study on overlying strata breakage and strata behaviors law of 7.0 m mining height working face[J]. COAL SCIENCE AND TECHNOLOGY, 2017, (8).
    [5]WANG Qing-xiong. Study on mine strata pressure behavior law during 5 m high cutting coal mining face passing through fault[J]. COAL SCIENCE AND TECHNOLOGY, 2015, (5).
    [6]Mine Strata Pressure Behavior Law of Fully Mechanized Top Coal Caving Mining Face During Terminal Mining Period in Buliangou Mine[J]. COAL SCIENCE AND TECHNOLOGY, 2013, (6).
    [7]Key Technology for Fully Mechanized Top Coal Caving Mining in Thick Seam Passing Through Small Mine Goaf with Backfill[J]. COAL SCIENCE AND TECHNOLOGY, 2012, (4).
    [8]Fire Prevention and Control Measures as well as Fire Cause Analysis for Fully Mechanized Top Coal Caving[J]. COAL SCIENCE AND TECHNOLOGY, 2012, (3).
    [9]Mine Pressure Behavior Law and Powered Support Suitability of High Cutting Coal Mining Face in Shallow Depth Seam[J]. COAL SCIENCE AND TECHNOLOGY, 2011, (1).
  • Cited by

    Periodical cited type(18)

    1. 李阳. 影视拍摄机器人中基于目标检测信息的跟踪算法应用研究. 自动化与仪器仪表. 2025(06)
    2. 毛清华,苏毅楠,贺高峰,翟姣,王荣泉,尚新芒. 基于改进YOLOv8模型的井下人员入侵带式输送机危险区域智能识别. 工矿自动化. 2025(01): 11-20+103 .
    3. 李小军,赵明炀,李淼. 基于深度学习的钻孔冲煤量智能识别方法. 煤田地质与勘探. 2025(01): 257-270 .
    4. 路洋,董立红,叶鸥. 基于自适应链接优化的井下行人抗遮挡跟踪方法研究. 工矿自动化. 2025(02): 65-75+137 .
    5. 柳小波,范立鹏,秦丽杰,王连成,张兴帆. 机器视觉技术在矿山行业的应用现状与展望. 有色金属(矿山部分). 2025(02): 1-15 .
    6. 唐俊飞,邢海龙,李溯,张涛涛,刘恒,姚诗雨. 结合改进CNN与自注意力机制的煤矿轮式机器人目标检测技术. 煤矿安全. 2025(03): 224-232 .
    7. 毛清华,翟姣,胡鑫,苏毅楠,薛旭升. 煤矿综采工作面人员入侵危险区域智能识别方法. 煤炭学报. 2025(02): 1347-1361 .
    8. 井晶,高宇蒙,赵作鹏,闵冰冰. 一种改进的Yolov5s煤矿井下人员计数模型. 计算机仿真. 2025(04): 525-530+551 .
    9. 张宇豪,肖新宇,朱梓润,訾梦超,廖金湘. 一种基于DeepSORT的逆透视车流量检测方法. 轻工科技. 2024(01): 98-100 .
    10. 王洪磊,郭鑫,张亦凡,张俊升. 煤质煤量全面在线检测技术发展现状及应用进展. 煤炭科学技术. 2024(02): 219-237 . 本站查看
    11. 邵小强,李鑫,杨永德,原泽文,杨涛. 基于改进YOLOv7的矿井人员检测算法. 电子科技大学学报. 2024(03): 414-423 .
    12. 王茂森,鲍久圣,章全利,杨阳,袁晓明,阴妍,张可琨,葛世荣. 煤矿井下单轨吊无人驾驶目标识别算法与轨道接缝检测方法. 煤炭学报. 2024(S1): 457-471 .
    13. 狄靖尧,杨超宇. 基于改进Transformer的井下人员检测算法. 科学技术与工程. 2024(26): 11188-11194 .
    14. 解北京,李恒,董航,栾铮,张奔,李晓旭. 基于多尺度特征融合井下猴车载人状态的智能识别算法与应用. 煤炭科学技术. 2024(12): 272-286 . 本站查看
    15. 孙林,陈圣,姚旭龙,张艳博,陶志刚,梁鹏. 煤矿井下残缺信息的多目标检测方法研究. 煤炭科学技术. 2024(S2): 211-220 . 本站查看
    16. 范伟强,王雪瑾,张颖慧,李晓宇. 改进YOLOv7和DeepSORT的井下人员检测与跟踪算法. 煤炭科学技术. 2024(S2): 343-355 . 本站查看
    17. 程德强,寇旗旗,江鹤,徐飞翔,宋天舒,王晓艺,钱建生. 全矿井智能视频分析关键技术综述. 工矿自动化. 2023(11): 1-21 .
    18. 郝明月,闵冰冰,张新建,赵作鹏,吴晨,王欣. 基于改进YOLOv5s的矿工排队检测方法. 工矿自动化. 2023(11): 160-166 .

    Other cited types(12)

Catalog

    Article views (275) PDF downloads (545) Cited by(30)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return