Advance Search
JIN Dewu, LIU Yingfeng, WANG Tiantian. Water-reducing mining technology for fully-mechanized top-coal caving mining in thick coal seams under ultra-thick sandstone aquifer[J]. COAL SCIENCE AND TECHNOLOGY, 2020, 48(9): 88-95.
Citation: JIN Dewu, LIU Yingfeng, WANG Tiantian. Water-reducing mining technology for fully-mechanized top-coal caving mining in thick coal seams under ultra-thick sandstone aquifer[J]. COAL SCIENCE AND TECHNOLOGY, 2020, 48(9): 88-95.

Water-reducing mining technology for fully-mechanized top-coal caving mining in thick coal seams under ultra-thick sandstone aquifer

More Information
  • Available Online: April 02, 2023
  • Published Date: September 24, 2020
  • Binchang Mining Area is a typical intensive full-mechanized top-coal caving mining area.However,mine production is faced with the influence and threat of water inflow from Luohe formation ultra-thick sandstone of coal roof,for a long time.Therefore,water-reducing mining is the main problem in the sustainable development of mining area.This paper summarized general characteristics of vertical heterogeneity of ultra-thick aquifer,based on hydrogeological condition fine expedition of ultra-thick sandstone aquifer.And these characteristics were regarded as water-reducing basic hydrogeology of Binchang mining area.In addition,overburden failure general law of fully-mechanized top-coal caving mining area was summarized according to exploration results of water-conducting fracture zone height.Then,we analyzed the main controlling factors of water inflow including aquifer thickness,water yield property and overburden rock thickness.And a P evaluation model,mining area affected by roof water index,was established.Based on this model,influence of roof aquifer on mining was divided into three grades including weak influence zone,medium influence zone and strong influence zone,and influence partition indexes were provided.Besides,we first proposed the concept of wedging ratio,and analyzed its basic theory and application condition.And three water-reduction patterns including water reduction control,height-width limit,isolation-grouting modes were established according to the influence degree dividing zones.Using this technology,typical coal mines all conduct fully-mechanized top-coal caving water-reducing mining,and this technology makes aquifer level recover in weak influence zone,increase of water inflow decrease in medium influence zone after mining(basically within 100 m2/h),water inflow decrease after grouting and insulating.On the whole,the practical application results are satisfactory.
  • Related Articles

    [1]LU Qinggang, WANG Kai, HUANG Honghu, LIANG Yi, ZHANG Jiangshi, WANG Yanan, JIA Yulu, LIANG Yunfei. Molecular simulation study on effect of mine water hardness on foam stability[J]. COAL SCIENCE AND TECHNOLOGY, 2025, 53(S1): 519-528. DOI: 10.12438/cst.2024-0642
    [2]HE Yupeng, BAO Yixiang, WU Min, HU Jiamin, LI Jie, LIU Xiaoqing, ZHONG Jinkui, LI Jingfeng. Potential risk assessment of organic pollutants in coal mining water[J]. COAL SCIENCE AND TECHNOLOGY, 2024, 52(8): 234-246. DOI: 10.12438/cst.2023-1527
    [3]YAN Min, YUE Min, LIN Haifei, YAN Dongjie, WEI Jianing, QIN Xueyan, ZHANG Jin. Experimental study on the influence of middle and low rank coal functional groups on coal wettability[J]. COAL SCIENCE AND TECHNOLOGY, 2023, 51(5): 103-113. DOI: 10.13199/j.cnki.cst.2021-1097
    [4]ZHANG Jian, XU Bo, WEI Jianping, ZHANG Pengyan, CAI Maolin, ZHANG Kaixuan. Numerical simulation of coal surface contact angle based on roughness[J]. COAL SCIENCE AND TECHNOLOGY, 2023, 51(4): 96-104. DOI: 10.13199/j.cnki.cst.2021-0871
    [5]LIU Jun, YANG Tong, WANG Liguo, CHEN Xiangjun. Study on elimination of water blocking effect in coal seam and its influence on methane desorption characteristics[J]. COAL SCIENCE AND TECHNOLOGY, 2022, 50(9): 82-92.
    [6]GAO Baobin, QIAN Yanan, CHEN Liwei, WANG Zuguang, LYU Pengbo. Study on gas pressure affected to bump potential of coal sample[J]. COAL SCIENCE AND TECHNOLOGY, 2018, (10).
    [7]YU Qinghang, XU Zhengang, LI Ting, LI Hui, LIANG Xing. Effect of combustion temperature on physico-chemical properties anddesulphurization potentiality of fly ash[J]. COAL SCIENCE AND TECHNOLOGY, 2018, (3).
    [8]Li Zhonghui Liu Yongjie Wang Enyuan Li Xuelong Niu Yue, . Research on grey-catastrophe characteristics of electric potential signal during gas-bearing coal under loaded breaking[J]. COAL SCIENCE AND TECHNOLOGY, 2015, (10).
    [9]Raw Coal Density Affected to Surface Zeta Potential of Muddy and Slime Particle[J]. COAL SCIENCE AND TECHNOLOGY, 2011, (6).
  • Cited by

    Periodical cited type(13)

    1. 邓立军,袁金波,刘剑,尚文天. 基于SSA-LSTM的风速异常波动检测方法. 煤炭科学技术. 2024(03): 139-147 . 本站查看
    2. 张建龙,李哲远. 贵州某煤矿煤层气开发储量评价及产能预测研究. 科技资讯. 2024(12): 158-160+165 .
    3. 柳洁,田冷,刘士鑫,李宁,张佳超,平曦,马旭晴,周建,张楠. 基于复合机器算法的致密气井产能预测模型——以鄂尔多斯盆地SM区块为例. 大庆石油地质与开发. 2024(05): 69-78 .
    4. 张晓东,陈元行,高绍姝,白广芝. 基于CNN-LSTM算法的气井产量预测研究. 计算机与数字工程. 2024(08): 2367-2371+2383 .
    5. 王健,徐加放,王博闻,师浩林,薛迦文,杨刚,马腾飞. 基于GA-Elman神经网络的煤层气临界解吸压力预测. 中国石油大学学报(自然科学版). 2024(05): 138-145 .
    6. 黄力,熊先钺,王峰,孙雄伟,张艺馨,赵龙梅,石石,张稳,赵浩阳,季亮,邓琳. 深层煤层气直丛井产能影响因素确定新方法. 油气藏评价与开发. 2024(06): 990-996 .
    7. 刘大锰,王子豪,陈佳明,邱峰,朱凯,高羚杰,周柯宇,许少博,孙逢瑞. 基于ResNet残差神经网络识别的深部煤层显微组分和微裂缝分类——以鄂尔多斯盆地石炭系本溪组8~#煤层为例. 石油与天然气地质. 2024(06): 1524-1536 .
    8. 李媛,郭大立,康芸玮. 融合注意力机制的煤层气产量动态预测. 科学技术与工程. 2023(02): 550-557 .
    9. 李金平,潘军,李勇,周秦汉,赵恒平. 基于流动物质平衡理论的煤层气井定量化排采新方法. 天然气工业. 2023(06): 87-95 .
    10. 王成旺,李曙光,王玉斌,谢正龙,刘之的. 气藏产能测井预测方法研究综述. 科学技术与工程. 2023(28): 11927-11936 .
    11. 冯堃,李峰,张双源,赵雨寒,甄怀宾,刘谨嘉,祝捷. 基于生产数据的煤层气井排采评价与优化. 矿业研究与开发. 2023(12): 52-58 .
    12. 赵海峰,诸立凯,刘长松,张先凡. 基于注意力机制的CNN-GRU煤层气产能预测方法研究. 煤矿安全. 2023(12): 11-17 .
    13. 喻廷旭,金涛,罗勇,尹中山,朱韩友,田明才. 川南宜宾地区煤层气资源潜力及有利区优选. 煤炭科学技术. 2022(09): 130-137 . 本站查看

    Other cited types(9)

Catalog

    Article views (344) PDF downloads (425) Cited by(22)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return