Advance Search
Pang Yihui Liu Xinhua Ma Ying, . Key technologies of fully- mechanized caving intelligent mining equipment in ten million tons of mines group[J]. COAL SCIENCE AND TECHNOLOGY, 2015, (8).
Citation: Pang Yihui Liu Xinhua Ma Ying, . Key technologies of fully- mechanized caving intelligent mining equipment in ten million tons of mines group[J]. COAL SCIENCE AND TECHNOLOGY, 2015, (8).

Key technologies of fully- mechanized caving intelligent mining equipment in ten million tons of mines group

More Information
  • Available Online: April 02, 2023
  • Published Date: August 24, 2015
  • In order to improve level of intelligent mining technology and comprehensive coordination management technology in ten million tons of mines group,the def inition of ten million tons of coal mines group was cleared.The technology of coal cutter cutting automatically,.hydraulic support automatically move with coal cutter and top coal caving intelligently were studied based on electrohydraulic control system in Datong Coal Mine Group.The fully-mechanized caving intelligent mining system which wa s based on cloud computing technology was analyzed.The results showed that technology of coal cutter cutting automatically,hydraulic support automatically move with coa I cutter and top coal caving intelligently were foundation to achieve intelligent mining in fully-mechanized top coal caving face. The problems of mass data and handler com plex in fully-mechanized caving itelligent mining system were better solved based on cloud computing technology.The equipment was managed and allocated by equipme nt series spectrum,which improve the efficiency of use of equipment greatly.
  • Related Articles

    [1]LI Quansheng, LI Lin. Technology and application of damage reduction mining and ecosystem restoration of open-pit coal mines in eastern grassland area[J]. COAL SCIENCE AND TECHNOLOGY, 2023, 51(1): 484-492. DOI: 10.13199/j.cnki.cst.2022-1766
    [2]HU Zhenqi, LI Yuanyuan, LI Gensheng, HAN Jiazheng, LIU Shuguang. Opportunities and challenges of land reclamation and ecological restoration in mining areas under carbon neutral target[J]. COAL SCIENCE AND TECHNOLOGY, 2023, 51(1): 474-483. DOI: 10.13199/j.cnki.cst.2023-0047
    [3]CHEN Meinan, DING Zhongyi, HOU Huping, NI Qinglin, WANG Xueqing. Analysis on spatial heterogeneity of ecological restoration demand in resource-based cities: taking Jiawang District of Xuzhou city as an example-A case study in Jiawang District of Xuzhou City[J]. COAL SCIENCE AND TECHNOLOGY, 2022, 50(12): 278-286. DOI: 10.13199/j.cnki.cst.ST21-001
    [4]WEN Caihuan WANG Wendong, . Study on ecological restoration of open pit mines based on UAV oblique photogrammetry technology[J]. COAL SCIENCE AND TECHNOLOGY, 2020, 48(10).
    [5]HU Haifeng, LIAN Xugang, CAI Yinfei, ZHANG Kai. Study on ecological environment damage and restoration for coal mining-subsided area in loess hilly area of Shanxi Province[J]. COAL SCIENCE AND TECHNOLOGY, 2020, 48(4).
    [6]XU Li, FENG Fei, LIU Ying, YANG Yuping, ZHENG Wendan. Relationship between plant species diversity and soil chemical properties in coal gangue dump:early stage of ecological restoration in Lingwu Mining Area[J]. COAL SCIENCE AND TECHNOLOGY, 2020, 48(4).
    [7]HU Zhenqi, XIAO Wu. Some thoughts on green development strategy of coal industry:from aspects of ecological restoration[J]. COAL SCIENCE AND TECHNOLOGY, 2020, 48(4).
    [8]WU Qunying, FENG Zewei, HU Zhenqi, CHEN Chao, FU Yaokun, YANG Fuqin, GAO Leilei. Influence of dynamic variation of ground cracks on soil water content in ecological-fragile coal mining areas[J]. COAL SCIENCE AND TECHNOLOGY, 2020, 48(4).
    [9]HU Zhenqi. The 30 years’ land reclamation and ecological restoration in China:review,rethinking and prospect[J]. COAL SCIENCE AND TECHNOLOGY, 2019, (1).
    [10]ZHANG Jian-min LI Quan-sheng HU Zhen-qi WANG Yi LI Qiang, . Study on Ecological Restoration Mode of Ultra Wide Fully-Mechanized Coal Mining in West China Aeolian Sand Area[J]. COAL SCIENCE AND TECHNOLOGY, 2013, (9).
  • Cited by

    Periodical cited type(23)

    1. 李培涛,刘泉声,朱元广,高峰,范利丹. 煤矿深部巷道大变形分步联合控制研究. 岩土力学. 2025(02): 591-612 .
    2. 赵增辉,杜佳泽,马庆,何睿喆. 弱胶结巷道围岩全断面锚固支护时机-支护参数综合影响分析. 中国矿业. 2025(03): 134-144 .
    3. 杭银建,刘洪林,李国栋. 弱胶结膨胀性富水煤巷围岩变形破坏特征及控制技术. 煤炭工程. 2025(02): 54-60 .
    4. 张闯,杜盼,陈建崇,姚新宇,王博,杨雨默,李瞻领,马耀荣,常震坤,许良珂. 弱胶结含砾岩层覆岩断裂及应力变化特征研究. 煤矿安全. 2025(05): 121-130 .
    5. 李政委. 某矿大断面软岩顶板巷道围岩支护优化. 现代矿业. 2024(04): 212-215 .
    6. 李桂臣,邵泽宇,孙元田,李菁华,杨森,郝浩然,沃小芳. 煤矿掘采空间垮塌岩体稳定性与救援通道构建. 绿色矿山. 2024(01): 11-20 .
    7. 朱铖宇,刘洪林,陈志文,罗文杰,朱俊杰,邹长锋,吴振良. 弱胶结地层富水巷道围岩变形规律研究. 煤炭技术. 2024(06): 43-47 .
    8. 郑建伟,管增伦,鞠文君,张修峰,薛珊珊,王帅,李海涛,杨国强,李春元,王之禾. 三向应力下支护应力对圆形巷道围岩应力分布规律的影响. 采矿与岩层控制工程学报. 2024(03): 118-127 .
    9. 高永格,徐振铭,洛锋,陈振,王鹏,李盟,高帅,何团. 高偏应力煤巷围岩拉剪破裂特征及分区控制方法研究. 采矿与岩层控制工程学报. 2024(04): 66-79 .
    10. 刘家顺,周妮,左建平,郑智勇,金佳旭. 卸围压下弱胶结软岩分数阶蠕变损伤本构模型. 岩土力学. 2024(10): 2937-2948 .
    11. 张世忠,范钢伟,张东升,李文平,范张磊. 应力-损伤-渗流耦合下采动弱胶结覆岩渗透性演化规律. 采矿与安全工程学报. 2024(06): 1230-1240 .
    12. 赵明洲,方娟,辛程鹏. 深部高应力半煤岩巷变形机理及跨界高强支护技术. 煤矿安全. 2023(06): 113-122 .
    13. 王杰,庞建勇,赵正阳,姚韦靖. 软岩巷道中锚杆参数对围岩稳定性的影响分析. 河南城建学院学报. 2023(04): 32-39 .
    14. 李学彬,谷群涛,温国惠,孙兆冰,朱建平,陈明虎,周玉颖. 侏罗系地层巷道淋水顶板破坏机理及治理研究. 煤炭科学技术. 2023(09): 170-179 . 本站查看
    15. 程志斌,王祖洸,李化敏,王文强. 大同矿区回采巷道覆岩稳定性分类及支护参数优化. 矿业安全与环保. 2023(05): 111-115+123 .
    16. 石垚. 预应力锚杆支护应力场叠加效应试验研究. 能源与环保. 2023(11): 51-60 .
    17. 黄勇,潘夏辉,林志斌. 深埋弱胶结软岩巷道变形破坏规律与控制对策. 煤矿安全. 2022(02): 210-218 .
    18. 相啸宇,杨学瑞,马成甫,任强,张闯,房平,罗波远,孙彦宁. 断层影响下弱胶结软岩工作面停采线合理位置确定. 煤炭技术. 2022(06): 29-33 .
    19. 王波,张海峰,杨张杰,张敦喜,余大军. 工作面断层带静动压分步耦合预注浆加固技术研究. 煤炭科学技术. 2022(06): 186-195 . 本站查看
    20. 李桂臣,杨森,孙元田,许嘉徽,李菁华. 复杂条件下巷道围岩控制技术研究进展. 煤炭科学技术. 2022(06): 29-45 . 本站查看
    21. 李景涛,马成甫,张闯,任强,于凤海,计鹏举,周凯. 弱胶结软岩地层大巷保护煤柱宽度的优化. 黑龙江科技大学学报. 2022(05): 582-587 .
    22. 陈康,杨张杰,王福海,王威,王庆牛. 富水弱胶结顶板巷道支护优化设计研究. 煤炭工程. 2022(11): 79-83 .
    23. 郝明,潘夏辉,张勃阳. 淋水条件下弱胶结软岩巷道变形破坏特征与支护技术. 煤矿安全. 2021(12): 219-228 .

    Other cited types(10)

Catalog

    Article views (630) PDF downloads (570) Cited by(33)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return