Advance Search
WANG Guoyi, WEI Qiangqiang, SONG Xiaoxia, DU Liqiang. Evaluation of hydraulic fracturing effect of CBM well in Gujiao Area of Taiyuan Xishan Coalfield[J]. COAL SCIENCE AND TECHNOLOGY, 2018, (6).
Citation: WANG Guoyi, WEI Qiangqiang, SONG Xiaoxia, DU Liqiang. Evaluation of hydraulic fracturing effect of CBM well in Gujiao Area of Taiyuan Xishan Coalfield[J]. COAL SCIENCE AND TECHNOLOGY, 2018, (6).

Evaluation of hydraulic fracturing effect of CBM well in Gujiao Area of Taiyuan Xishan Coalfield

More Information
  • Available Online: April 02, 2023
  • Published Date: June 24, 2018
  • In order to evaluate the effect of hydraulic fracturing construction in the existing development plan of CBM in Gujiao,the main parameters of fracturing fractures are obtained through the following two methods:The micro-seismic monitoring was performed on the fractures in 11 layers,and the monitoring data of crack orientation,seam length and seam height were obtained.Under the influence of the regional stress field,the fracture orientation has a good correlation with the main control structure.Under the condition of locally complex stress field,the fracture orientation changes greatly.The average wing length is 64 meters.Using the opportunity of coal mining back to CBM wells,downhole field observation of proppant distribution patterns.The main fracture orientation of well XS-10 is 87°,which is close to the actual measured joint direction.The east half-sew length with effective support is 24.35 m.In the existing development scheme,the effective fracture and well spacing do not match,and the crack penetration ratio is too small,affecting single well production and recovery.There is a good correlation between the fracture orientation and the tectonic trend.In the development of coalbed methane,the stress field and structural shape should be fully considered,and the well layout and fracturing construction parameters should be optimized.
  • Related Articles

    [1]GAO Xiangdong, SUN Hao, WANG Yanbin, NI Xiaoming, DENG Ze. In-situ stress field of deep coal reservoir in Linxing area and its control on fracturing crack[J]. COAL SCIENCE AND TECHNOLOGY, 2022, 50(8): 140-150.
    [2]ZHANG Jiwei, LI Fangzheng, YU Xinhao, DING Hang, KONG Linghui. Research on evolution characteristics of early-age temperature-stress field of inner lining at deep frozen shaft[J]. COAL SCIENCE AND TECHNOLOGY, 2021, 49(2): 69-76. DOI: 10.13199/j.cnki.cst.2021.02.009
    [3]LIU Shiqi, FANG Huihuang, SANG Shuxun, WU Jianguang, ZHANG Shouren, ZHANG Bing. Numerical simulation study on coal seam CO2-ECBM based onmulti-physics fields coupling solution[J]. COAL SCIENCE AND TECHNOLOGY, 2019, (9).
    [4]HUO Bingjie, FAN Zhanglei, XIE Wei, DUAN Zhihua, LU Yangbo, JING Xuedong. Stress field analysis and study on dynamic pressure mechanism under goaf of shallow depth and closed distance room and pillar mining[J]. COAL SCIENCE AND TECHNOLOGY, 2019, (1).
    [5]JIN Hongwei XIAO Qiao LI Shugang XU Gang, . Analysis on representation of stress field structure of roadway surrounding rock and its failure factor[J]. COAL SCIENCE AND TECHNOLOGY, 2017, (9).
    [6]Xu Jiang, . Experimental study on physical simulation experiment of hydraulic fracturing dynamic evolution in coal and rock mass .[J]. COAL SCIENCE AND TECHNOLOGY, 2017, (6).
    [7]Zhou Baojing. Study on overburden strata activity law for mining in sectional seam of steep inclined ultra thick seam[J]. COAL SCIENCE AND TECHNOLOGY, 2015, (8).
    [8]YANG-Fan YANG Xiu-chun JIANG Bo ZHOU Ke CHEN Cai-hong, . Analysis on Tectonic Characteristics and Tectonic Stress Field in Baode Area[J]. COAL SCIENCE AND TECHNOLOGY, 2014, (7).
    [9]Analysis on Coal and Gas Outburst Mechanism Under Multi Field Coupling Action[J]. COAL SCIENCE AND TECHNOLOGY, 2011, (5).
    [10]Analysis on Para-Static Stress Field Features of Pre-Cracking Blasting in Seam[J]. COAL SCIENCE AND TECHNOLOGY, 2011, (3).
  • Cited by

    Periodical cited type(18)

    1. 李阳. 影视拍摄机器人中基于目标检测信息的跟踪算法应用研究. 自动化与仪器仪表. 2025(06)
    2. 毛清华,苏毅楠,贺高峰,翟姣,王荣泉,尚新芒. 基于改进YOLOv8模型的井下人员入侵带式输送机危险区域智能识别. 工矿自动化. 2025(01): 11-20+103 .
    3. 李小军,赵明炀,李淼. 基于深度学习的钻孔冲煤量智能识别方法. 煤田地质与勘探. 2025(01): 257-270 .
    4. 路洋,董立红,叶鸥. 基于自适应链接优化的井下行人抗遮挡跟踪方法研究. 工矿自动化. 2025(02): 65-75+137 .
    5. 柳小波,范立鹏,秦丽杰,王连成,张兴帆. 机器视觉技术在矿山行业的应用现状与展望. 有色金属(矿山部分). 2025(02): 1-15 .
    6. 唐俊飞,邢海龙,李溯,张涛涛,刘恒,姚诗雨. 结合改进CNN与自注意力机制的煤矿轮式机器人目标检测技术. 煤矿安全. 2025(03): 224-232 .
    7. 毛清华,翟姣,胡鑫,苏毅楠,薛旭升. 煤矿综采工作面人员入侵危险区域智能识别方法. 煤炭学报. 2025(02): 1347-1361 .
    8. 井晶,高宇蒙,赵作鹏,闵冰冰. 一种改进的Yolov5s煤矿井下人员计数模型. 计算机仿真. 2025(04): 525-530+551 .
    9. 张宇豪,肖新宇,朱梓润,訾梦超,廖金湘. 一种基于DeepSORT的逆透视车流量检测方法. 轻工科技. 2024(01): 98-100 .
    10. 王洪磊,郭鑫,张亦凡,张俊升. 煤质煤量全面在线检测技术发展现状及应用进展. 煤炭科学技术. 2024(02): 219-237 . 本站查看
    11. 邵小强,李鑫,杨永德,原泽文,杨涛. 基于改进YOLOv7的矿井人员检测算法. 电子科技大学学报. 2024(03): 414-423 .
    12. 王茂森,鲍久圣,章全利,杨阳,袁晓明,阴妍,张可琨,葛世荣. 煤矿井下单轨吊无人驾驶目标识别算法与轨道接缝检测方法. 煤炭学报. 2024(S1): 457-471 .
    13. 狄靖尧,杨超宇. 基于改进Transformer的井下人员检测算法. 科学技术与工程. 2024(26): 11188-11194 .
    14. 解北京,李恒,董航,栾铮,张奔,李晓旭. 基于多尺度特征融合井下猴车载人状态的智能识别算法与应用. 煤炭科学技术. 2024(12): 272-286 . 本站查看
    15. 孙林,陈圣,姚旭龙,张艳博,陶志刚,梁鹏. 煤矿井下残缺信息的多目标检测方法研究. 煤炭科学技术. 2024(S2): 211-220 . 本站查看
    16. 范伟强,王雪瑾,张颖慧,李晓宇. 改进YOLOv7和DeepSORT的井下人员检测与跟踪算法. 煤炭科学技术. 2024(S2): 343-355 . 本站查看
    17. 程德强,寇旗旗,江鹤,徐飞翔,宋天舒,王晓艺,钱建生. 全矿井智能视频分析关键技术综述. 工矿自动化. 2023(11): 1-21 .
    18. 郝明月,闵冰冰,张新建,赵作鹏,吴晨,王欣. 基于改进YOLOv5s的矿工排队检测方法. 工矿自动化. 2023(11): 160-166 .

    Other cited types(12)

Catalog

    Article views (487) PDF downloads (370) Cited by(30)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return