TANG Yongzhi,LI Ping,ZHU Guiwang,et al. Application of ultra-high pressure hydraulic slotting technology in medium hardness and low permeability coal seam[J]. Coal Science and Technology,2022,50(12):43−49
. DOI: 10.13199/j.cnki.cst.mcq22-12Citation: |
TANG Yongzhi,LI Ping,ZHU Guiwang,et al. Application of ultra-high pressure hydraulic slotting technology in medium hardness and low permeability coal seam[J]. Coal Science and Technology,2022,50(12):43−49 . DOI: 10.13199/j.cnki.cst.mcq22-12 |
In order to improve the gas pre-drainage efficiency of medium hard coal seam with high gas and low permeability, the applicable conditions, advantages and disadvantages of hydraulic piercing, hydraulic fracturing and hydraulic cutting seam anti-permeability technology were discussed. Based on the principle of ultra-high pressure hydraulic slotting technology, a kind of ultra-high pressure hydraulic slotting device for through-layer drilling is developed, it is mainly composed of diamond hydraulic slotting bit, shallow spiral drill pipe, ultra-high pressure rotary joint, ultra-high pressure clean water pump, high-low pressure converter, ultra-high pressure rubber pipe, etc. The water pressure reaches 60−100 MPa, which can realize the integration of drilling and cutting, and is simple and convenient to use. The device was used to carry out field tests in the pre-drainage boreholes of 11-2 coal seam through the floor roadway of 1361(1) haulage gateway in Dingji coal mine. The coal seam gas pressure was 1.43 MPa, the gas content was 8.05 m3/t, and the gas permeability coefficient was 0.013 m2/ (MPa2·d), the coal seam firmness coefficient is 0.79; 1361(1) transportation roadway floor No.11−No.15 drilling area unit length 227 meters, using high-pressure hydraulic slotting anti-permeability measures, 1361(1) transportation roadway floor No.6—No.10 drilling area unit length 213 meters, anti-permeability measures of low-pressure water punching in coal mine. The results show that the average single-knife slitting time of ultra-high pressure hydraulic slitting drilling is 10.7 min, the single-knife coal output is 0.31 t, the equivalent slitting radius is 1.38 m, the slitting density of the coal hole section is 1 knife/m, and the average cutting rate per hole is The average gas drainage concentration of ultra-high pressure hydraulic slotted holes is 56.97%, which is 2.37 times that of low-pressure punching; The time to reach the standard is about 23 days, which is 74.4% and 54.9% shorter than that of ordinary drilling and hydraulic punching technology respectively. Compared with ordinary drilling and hydraulic punching technology, ultra-high pressure hydraulic slotting technology is more ideal for gas drainage in low permeability medium-hard coal seams.
[1] |
程远平,俞启香. 中国煤矿区域性瓦斯治理技术的发展[J]. 采矿与安全工程学报,2007,24(4):383−390. doi: 10.3969/j.issn.1673-3363.2007.04.002
CHENG Yuanping,YU Qixiang. Development of regional gas control technology for chinese coalmines[J]. Journal of Mining and Safety Engineering,2007,24(4):383−390. doi: 10.3969/j.issn.1673-3363.2007.04.002
|
[2] |
周世宁, 林柏泉. 煤层瓦斯赋存与流动理论[M]. 北京: 煤炭工业出版社, 1998.
|
[3] |
袁 亮. 瓦斯治理理念和煤与瓦斯共采技术[J]. 中国煤炭,2010,36(6):5−12. doi: 10.3969/j.issn.1006-530X.2010.06.001
YUAN Liang. Gas control concept and coal and gas co mining technology[J]. China Coal,2010,36(6):5−12. doi: 10.3969/j.issn.1006-530X.2010.06.001
|
[4] |
LI Zhonghui,WANG Enyuan,OU Jianchun,et al. Hazard evaluation of coal and gas outbursts in a coal-mine roadway based on logistic regression model[J]. International Journal of Rock Mechanics and Mining Sciences,2015,80:185−195. doi: 10.1016/j.ijrmms.2015.07.006
|
[5] |
FAN Chaojun,LI Sheng,LUO Mingkun,et al. Coal and gas outburst dynamic system[J]. International Journal of Rock Mechanics and Mining Sciences,2016,26(6):75−82.
|
[6] |
王 凯,李 波,魏建平,等. 水力冲孔钻孔周围煤层透气性变化规律[J]. 采矿与安全工程学报,2013,30(5):778−784.
WANG Kai,LI Bo,WEI Jianping,et al. Change law of coal seam permeability around hydraulic punching boreholes[J]. Journal of Mining and Safety Engineering,2013,30(5):778−784.
|
[7] |
刘明举,孔留安,郝富昌,等. 水力冲孔技术在严重突出煤层中的应用[J]. 煤炭学报,2005,30(4):451−454. doi: 10.3321/j.issn:0253-9993.2005.04.010
LIU Mingju,KONG Liu'an,HAO Fuchang,et al. Application of hydraulic punching technology in coal seams with serious outburst[J]. Journal of China Coal Society,2005,30(4):451−454. doi: 10.3321/j.issn:0253-9993.2005.04.010
|
[8] |
王恩元,汪 皓,刘晓斐,等. 水力冲孔孔洞周围煤体地应力和瓦斯时空演化规律[J]. 煤炭科学技术,2020,48(1):39−45. doi: 10.13199/j.cnki.cst.2020.01.005
WANG Enyuan,WANG Hao,LIU Xiaofei,et al. Temporal and spatial evolution law of coal stress and gas around hydraulic punching holes[J]. Coal Science and Technology,2020,48(1):39−45. doi: 10.13199/j.cnki.cst.2020.01.005
|
[9] |
薛 斐. 水力冲孔煤层增透机理及应用研究[D]. 北京: 中国矿业大学(北京), 2018.
XUE Fei. Study on the mechanism and application of coal seam permeability enhancement by hydraulic punching [D]. Beijing : China University of Mining and Technology−Beijing, 2018.
|
[10] |
张永将,孟贤正,季 飞. 顺层长钻孔超高压水力割缝增透技术研究与应用[J]. 矿业安全与环保,2018,45(5):1−5,11. doi: 10.3969/j.issn.1008-4495.2018.05.001
ZHANG Yongjiang,MENG Xianzheng,JI Fei. Research and application of ultra-high pressure hydraulic slotting and anti permeability technology for long borehole in bedding[J]. Mining Safety and Environmental Protection,2018,45(5):1−5,11. doi: 10.3969/j.issn.1008-4495.2018.05.001
|
[11] |
曹建军. 超高压水力割缝卸压抽采区域防突技术应用研究[J]. 煤炭科学技术,2020,48(6):88−94.
CAO Jianjun. Application research on regional outburst prevention technology of ultra-high pressure hydraulic slot pressure in relief drainage area[J]. Coal Science and Technology,2020,48(6):88−94.
|
[12] |
刘生龙,朱传杰,林柏泉,等. 水力割缝空间分布模式对煤层卸压增透的作用规律[J]. 采矿与安全工程学报,2020,37(5):983−990.
LIU Shenglong,ZHU Chuanjie,LIN Baiquan,et al. The role of spatial distribution pattern of hydraulic slitting on coal seam pressure relief and permeability enhancement[J]. Journal of Mining and Safety Engineering,2020,37(5):983−990.
|
[13] |
杨兆中,张 丹,易良平,等. 多层叠置煤层压裂裂缝纵向扩展模型与数值模拟[J]. 煤炭学报,2021,46(10):3268−3277. doi: 10.13225/j.cnki.jccs.2020.1261
YANG Zhaozhong,ZHANG Dan,YI Liangping,et al. Longitudinal propagation model and numerical simulation of fracturing fractures in multilayer superimposed coal seams[J]. Journal of China Coal Society,2021,46(10):3268−3277. doi: 10.13225/j.cnki.jccs.2020.1261
|
[14] |
王 利,孟兵兵,曹运兴,等. 水力压裂体积张开度模型[J]. 岩石力学与工程学报,2020,39(5):887−900. doi: 10.13722/j.cnki.jrme.2019.1223
WANG Li,MENG Bingbing,CAO Yunxing,et al. Hydraulic fracturing volume opening model[J]. Journal of Rock Mechanics and Engineering,2020,39(5):887−900. doi: 10.13722/j.cnki.jrme.2019.1223
|
[15] |
ZHANG Yongjiang,ZOU Quanle,GUO Lindong. Air-leakage model and sealing technique with sealing-isolation integration for gas-drainage boreholes in coal mines[J]. Process Safety and Environmental Protection,2020,140:258−272. doi: 10.1016/j.psep.2020.03.024
|
[16] |
徐雪战. 低透气煤层超高压水力割缝与水力压裂联合增透技术[J]. 煤炭科学技术,2020,48(7):311−317. doi: 10.13199/j.cnki.cst.2020.07.034
XU Xuezhan. Ultra high pressure hydraulic slotting and hydraulic fracturing combined antireflection technology for low permeability coal seams[J]. Coal Science and Technology,2020,48(7):311−317. doi: 10.13199/j.cnki.cst.2020.07.034
|
[17] |
袁本庆. 煤巷条带水力化增透技术措施适用条件及评价指标初探[J]. 煤矿安全,2018,49(12):164−168.
YUAN Benqing. Preliminary study on the application conditions and evaluation indicators of the technical measures for hydraulically enhancing the transparency of coal roadway strips[J]. Safety in Coal Mines,2018,49(12):164−168.
|
[18] |
林柏泉,刘 厅,邹全乐,等. 割缝扰动区裂纹扩展模式及能量演化规律[J]. 煤炭学报,2015,40(4):719−727.
LIN Baiquan,LIU Ting,ZOU Quanle,et al. Crack propagation mode and energy evolution law in slotting disturbance zone[J]. Journal of China Coal Society,2015,40(4):719−727.
|
[19] |
李晓红,王晓川,康 勇,等. 煤层水力割缝系统过渡过程能量特性与耗散[J]. 煤炭学报,2014,39(8):1404−1408. doi: 10.13225/j.cnki.jccs.2014.9014
LI Xiaohong,WANG Xiaochuan,KANG Yong,et al. Energy characteristics and dissipation in the transition process of coal seam hydraulic slitting system[J]. Journal of China Coal Society,2014,39(8):1404−1408. doi: 10.13225/j.cnki.jccs.2014.9014
|
[20] |
杨增强. 煤体高压射流钻割卸压原理及其防冲研究[D]. 徐州: 中国矿业大学, 2014.
YANG Zengqiang. Research on pressure relief principle of coal high-pressure jet drilling and cutting and its erosion prevention [D]. Xuzhou: China University of Mining and Technology, 2014.
|
[21] |
张永将,黄振飞,李成成. 高压水射流环切割缝自卸压机制与应用[J]. 煤炭学报,2018,43(11):3016−3022.
ZHANG Yongjiang,HUANG Zhenfei,LI Chengcheng. Self relieving mechanism and application of high-pressure water jet ring cutting joint[J]. Journal of China Coal Society,2018,43(11):3016−3022.
|
[22] |
张永将,黄振飞,季 飞. 基于水力割缝卸压的煤岩与瓦斯动力灾害防控技术[J]. 煤炭科学技术,2021,49(4):133−141. doi: 10.13199/j.cnki.cst.2021.04.016
ZHANG Yongjiang,HUANG Zhenfei,JI Fei. Coal rock and gas dynamic disaster prevention and control technology based on hydraulic slotting and pressure relief[J]. Coal Science and Technology,2021,49(4):133−141. doi: 10.13199/j.cnki.cst.2021.04.016
|
[23] |
张永将,陆占金. 超高压水力割缝煤层增透成套装置研制及应用[J]. 煤炭科学技术,2020,48(10):97−104. doi: 10.13199/j.cnki.cst.2020.10.011
ZHANG Yongjiang,LU Zhanjin. Development and application of a complete set of ultra-high pressure hydraulic slit coal seam permeability increasing device[J]. Coal Science and Technology,2020,48(10):97−104. doi: 10.13199/j.cnki.cst.2020.10.011
|
1. |
魏建平,校朋伟,张慧栋,陈长江,刘勇. 磨料水射流旋转切割煤岩最优参数匹配模型研究. 煤炭科学技术. 2025(01): 192-202 .
![]() | |
2. |
陈芳. 水力冲孔技术在九鑫煤矿的应用研究. 能源与环保. 2025(02): 81-88 .
![]() | |
3. |
聂百胜,包松,柳先锋,刘鹏,张豪,何珩溢,李孜健,周皓文,贾雪祺,何学秋. 地面煤层气高强电爆震体积致裂技术及工程试验. 煤炭学报. 2025(01): 546-563 .
![]() | |
4. |
左伟芹,武圣杰,刘彦伟,龙丽群,贾浩杰,苗健,张世禧. 自吸环空流体式自激脉冲射流打击力时频特性试验研究. 煤炭科学技术. 2025(04): 300-311 .
![]() | |
5. |
张鹏冲. 无保护层开采超高压水力增透抽采半径研究. 煤矿机械. 2025(06): 53-57 .
![]() | |
6. |
武强. 切顶留巷Y形通风方式下采空区漏风规律研究. 陕西煤炭. 2025(05): 47-50 .
![]() | |
7. |
刘勇,张汶定,陈长江,魏建平,徐向宇,张宏图,南勤聪,校朋伟. 松软煤层无水化增透理论及技术发展趋势. 煤炭学报. 2025(04): 2123-2146 .
![]() | |
8. |
郭瑜,杨程涛,马彦操,王飞,韩晓明,刘超峰,武腾飞. 底抽巷钻冲作业恒压供水系统在古汉山矿的应用. 能源与环保. 2025(05): 7-12 .
![]() | |
9. |
曹建军,刘军,王中华. 陕西省煤矿瓦斯灾害防治现状及对策研究. 中国煤炭. 2024(02): 35-43 .
![]() | |
10. |
季飞. 松软煤层水力割缝缝槽形态控制技术研究及应用. 能源与环保. 2024(02): 29-33+39 .
![]() | |
11. |
李树清,吕晨辉,黄飞,钱运来,黄向韬,赵天哲,汤铸,杨凤玲,王晨. 金刚石串珠绳锯切割煤层卸压增透效应研究. 煤炭学报. 2024(02): 785-800 .
![]() | |
12. |
王博,侯恩科,马良,孙四清,杜新峰,杨建超,王正喜,单元伟. 顶板水平井分段分簇压裂治理掘进巷道瓦斯模式研究. 煤炭科学技术. 2024(05): 114-126 .
![]() | |
13. |
邹军. 低透气性突出煤层群首采层水力割缝卸压抽采技术研究. 中国煤炭. 2024(06): 52-58 .
![]() | |
14. |
郭勇. 可控冲击波强化增透技术在林华煤矿高瓦斯低渗透煤层的应用. 内蒙古煤炭经济. 2024(10): 168-170 .
![]() | |
15. |
刘永三. 超高压水射流割压联合技术试验分析. 陕西煤炭. 2024(07): 20-23+37 .
![]() | |
16. |
王想刚,张世范,许继宗,张吉福,陈国红,陈玉东,马占海. 高应力特厚突出煤层水力割缝卸压防突技术研究. 中国煤炭. 2024(10): 48-56 .
![]() | |
17. |
刘杰,赵长鑫,张浩,李志斌,王斌荣,潘如小. 白羊岭煤矿底抽巷穿层水力冲孔技术研究与应用. 煤炭科技. 2024(05): 169-175 .
![]() | |
18. |
双海清,张星,李宝军,林海飞,周斌,高海东,崔名威. 水射流割缝-注氮驱替联合促抽瓦斯模拟. 西安科技大学学报. 2024(06): 1030-1040 .
![]() | |
19. |
迟跃彬,褚俊洁,贾京飞,刘帅. 桑树坪二号井难抽采煤层瓦斯突出特征与防治. 陕西煤炭. 2023(05): 110-114 .
![]() |