Advance Search

TANG Yongzhi,LI Ping,ZHU Guiwang,et al. Application of ultra-high pressure hydraulic slotting technology in medium hardness and low permeability coal seam[J]. Coal Science and Technology,2022,50(12):43−49

. DOI: 10.13199/j.cnki.cst.mcq22-12
Citation:

TANG Yongzhi,LI Ping,ZHU Guiwang,et al. Application of ultra-high pressure hydraulic slotting technology in medium hardness and low permeability coal seam[J]. Coal Science and Technology,2022,50(12):43−49

. DOI: 10.13199/j.cnki.cst.mcq22-12

Application of ultra-high pressure hydraulic slotting technology in medium hardness and low permeability coal seam

Funds: 

National Science and Technology Major Project Funding (2016ZX05068)

More Information
  • Received Date: May 31, 2022
  • Available Online: March 08, 2023
  • In order to improve the gas pre-drainage efficiency of medium hard coal seam with high gas and low permeability, the applicable conditions, advantages and disadvantages of hydraulic piercing, hydraulic fracturing and hydraulic cutting seam anti-permeability technology were discussed. Based on the principle of ultra-high pressure hydraulic slotting technology, a kind of ultra-high pressure hydraulic slotting device for through-layer drilling is developed, it is mainly composed of diamond hydraulic slotting bit, shallow spiral drill pipe, ultra-high pressure rotary joint, ultra-high pressure clean water pump, high-low pressure converter, ultra-high pressure rubber pipe, etc. The water pressure reaches 60−100 MPa, which can realize the integration of drilling and cutting, and is simple and convenient to use. The device was used to carry out field tests in the pre-drainage boreholes of 11-2 coal seam through the floor roadway of 1361(1) haulage gateway in Dingji coal mine. The coal seam gas pressure was 1.43 MPa, the gas content was 8.05 m3/t, and the gas permeability coefficient was 0.013 m2/ (MPa2·d), the coal seam firmness coefficient is 0.79; 1361(1) transportation roadway floor No.11−No.15  drilling area unit length 227 meters, using high-pressure hydraulic slotting anti-permeability measures, 1361(1) transportation roadway floor No.6—No.10 drilling area unit length 213 meters, anti-permeability measures of low-pressure water punching in coal mine. The results show that the average single-knife slitting time of ultra-high pressure hydraulic slitting drilling is 10.7 min, the single-knife coal output is 0.31 t, the equivalent slitting radius is 1.38 m, the slitting density of the coal hole section is 1 knife/m, and the average cutting rate per hole is The average gas drainage concentration of ultra-high pressure hydraulic slotted holes is 56.97%, which is 2.37 times that of low-pressure punching; The time to reach the standard is about 23 days, which is 74.4% and 54.9% shorter than that of ordinary drilling and hydraulic punching technology respectively. Compared with ordinary drilling and hydraulic punching technology, ultra-high pressure hydraulic slotting technology is more ideal for gas drainage in low permeability medium-hard coal seams.

  • [1]
    程远平,俞启香. 中国煤矿区域性瓦斯治理技术的发展[J]. 采矿与安全工程学报,2007,24(4):383−390. doi: 10.3969/j.issn.1673-3363.2007.04.002

    CHENG Yuanping,YU Qixiang. Development of regional gas control technology for chinese coalmines[J]. Journal of Mining and Safety Engineering,2007,24(4):383−390. doi: 10.3969/j.issn.1673-3363.2007.04.002
    [2]
    周世宁, 林柏泉. 煤层瓦斯赋存与流动理论[M]. 北京: 煤炭工业出版社, 1998.
    [3]
    袁 亮. 瓦斯治理理念和煤与瓦斯共采技术[J]. 中国煤炭,2010,36(6):5−12. doi: 10.3969/j.issn.1006-530X.2010.06.001

    YUAN Liang. Gas control concept and coal and gas co mining technology[J]. China Coal,2010,36(6):5−12. doi: 10.3969/j.issn.1006-530X.2010.06.001
    [4]
    LI Zhonghui,WANG Enyuan,OU Jianchun,et al. Hazard evaluation of coal and gas outbursts in a coal-mine roadway based on logistic regression model[J]. International Journal of Rock Mechanics and Mining Sciences,2015,80:185−195. doi: 10.1016/j.ijrmms.2015.07.006
    [5]
    FAN Chaojun,LI Sheng,LUO Mingkun,et al. Coal and gas outburst dynamic system[J]. International Journal of Rock Mechanics and Mining Sciences,2016,26(6):75−82.
    [6]
    王 凯,李 波,魏建平,等. 水力冲孔钻孔周围煤层透气性变化规律[J]. 采矿与安全工程学报,2013,30(5):778−784.

    WANG Kai,LI Bo,WEI Jianping,et al. Change law of coal seam permeability around hydraulic punching boreholes[J]. Journal of Mining and Safety Engineering,2013,30(5):778−784.
    [7]
    刘明举,孔留安,郝富昌,等. 水力冲孔技术在严重突出煤层中的应用[J]. 煤炭学报,2005,30(4):451−454. doi: 10.3321/j.issn:0253-9993.2005.04.010

    LIU Mingju,KONG Liu'an,HAO Fuchang,et al. Application of hydraulic punching technology in coal seams with serious outburst[J]. Journal of China Coal Society,2005,30(4):451−454. doi: 10.3321/j.issn:0253-9993.2005.04.010
    [8]
    王恩元,汪 皓,刘晓斐,等. 水力冲孔孔洞周围煤体地应力和瓦斯时空演化规律[J]. 煤炭科学技术,2020,48(1):39−45. doi: 10.13199/j.cnki.cst.2020.01.005

    WANG Enyuan,WANG Hao,LIU Xiaofei,et al. Temporal and spatial evolution law of coal stress and gas around hydraulic punching holes[J]. Coal Science and Technology,2020,48(1):39−45. doi: 10.13199/j.cnki.cst.2020.01.005
    [9]
    薛 斐. 水力冲孔煤层增透机理及应用研究[D]. 北京: 中国矿业大学(北京), 2018.

    XUE Fei. Study on the mechanism and application of coal seam permeability enhancement by hydraulic punching [D]. Beijing : China University of Mining and Technology−Beijing, 2018.
    [10]
    张永将,孟贤正,季 飞. 顺层长钻孔超高压水力割缝增透技术研究与应用[J]. 矿业安全与环保,2018,45(5):1−5,11. doi: 10.3969/j.issn.1008-4495.2018.05.001

    ZHANG Yongjiang,MENG Xianzheng,JI Fei. Research and application of ultra-high pressure hydraulic slotting and anti permeability technology for long borehole in bedding[J]. Mining Safety and Environmental Protection,2018,45(5):1−5,11. doi: 10.3969/j.issn.1008-4495.2018.05.001
    [11]
    曹建军. 超高压水力割缝卸压抽采区域防突技术应用研究[J]. 煤炭科学技术,2020,48(6):88−94.

    CAO Jianjun. Application research on regional outburst prevention technology of ultra-high pressure hydraulic slot pressure in relief drainage area[J]. Coal Science and Technology,2020,48(6):88−94.
    [12]
    刘生龙,朱传杰,林柏泉,等. 水力割缝空间分布模式对煤层卸压增透的作用规律[J]. 采矿与安全工程学报,2020,37(5):983−990.

    LIU Shenglong,ZHU Chuanjie,LIN Baiquan,et al. The role of spatial distribution pattern of hydraulic slitting on coal seam pressure relief and permeability enhancement[J]. Journal of Mining and Safety Engineering,2020,37(5):983−990.
    [13]
    杨兆中,张 丹,易良平,等. 多层叠置煤层压裂裂缝纵向扩展模型与数值模拟[J]. 煤炭学报,2021,46(10):3268−3277. doi: 10.13225/j.cnki.jccs.2020.1261

    YANG Zhaozhong,ZHANG Dan,YI Liangping,et al. Longitudinal propagation model and numerical simulation of fracturing fractures in multilayer superimposed coal seams[J]. Journal of China Coal Society,2021,46(10):3268−3277. doi: 10.13225/j.cnki.jccs.2020.1261
    [14]
    王 利,孟兵兵,曹运兴,等. 水力压裂体积张开度模型[J]. 岩石力学与工程学报,2020,39(5):887−900. doi: 10.13722/j.cnki.jrme.2019.1223

    WANG Li,MENG Bingbing,CAO Yunxing,et al. Hydraulic fracturing volume opening model[J]. Journal of Rock Mechanics and Engineering,2020,39(5):887−900. doi: 10.13722/j.cnki.jrme.2019.1223
    [15]
    ZHANG Yongjiang,ZOU Quanle,GUO Lindong. Air-leakage model and sealing technique with sealing-isolation integration for gas-drainage boreholes in coal mines[J]. Process Safety and Environmental Protection,2020,140:258−272. doi: 10.1016/j.psep.2020.03.024
    [16]
    徐雪战. 低透气煤层超高压水力割缝与水力压裂联合增透技术[J]. 煤炭科学技术,2020,48(7):311−317. doi: 10.13199/j.cnki.cst.2020.07.034

    XU Xuezhan. Ultra high pressure hydraulic slotting and hydraulic fracturing combined antireflection technology for low permeability coal seams[J]. Coal Science and Technology,2020,48(7):311−317. doi: 10.13199/j.cnki.cst.2020.07.034
    [17]
    袁本庆. 煤巷条带水力化增透技术措施适用条件及评价指标初探[J]. 煤矿安全,2018,49(12):164−168.

    YUAN Benqing. Preliminary study on the application conditions and evaluation indicators of the technical measures for hydraulically enhancing the transparency of coal roadway strips[J]. Safety in Coal Mines,2018,49(12):164−168.
    [18]
    林柏泉,刘 厅,邹全乐,等. 割缝扰动区裂纹扩展模式及能量演化规律[J]. 煤炭学报,2015,40(4):719−727.

    LIN Baiquan,LIU Ting,ZOU Quanle,et al. Crack propagation mode and energy evolution law in slotting disturbance zone[J]. Journal of China Coal Society,2015,40(4):719−727.
    [19]
    李晓红,王晓川,康 勇,等. 煤层水力割缝系统过渡过程能量特性与耗散[J]. 煤炭学报,2014,39(8):1404−1408. doi: 10.13225/j.cnki.jccs.2014.9014

    LI Xiaohong,WANG Xiaochuan,KANG Yong,et al. Energy characteristics and dissipation in the transition process of coal seam hydraulic slitting system[J]. Journal of China Coal Society,2014,39(8):1404−1408. doi: 10.13225/j.cnki.jccs.2014.9014
    [20]
    杨增强. 煤体高压射流钻割卸压原理及其防冲研究[D]. 徐州: 中国矿业大学, 2014.

    YANG Zengqiang. Research on pressure relief principle of coal high-pressure jet drilling and cutting and its erosion prevention [D]. Xuzhou: China University of Mining and Technology, 2014.
    [21]
    张永将,黄振飞,李成成. 高压水射流环切割缝自卸压机制与应用[J]. 煤炭学报,2018,43(11):3016−3022.

    ZHANG Yongjiang,HUANG Zhenfei,LI Chengcheng. Self relieving mechanism and application of high-pressure water jet ring cutting joint[J]. Journal of China Coal Society,2018,43(11):3016−3022.
    [22]
    张永将,黄振飞,季 飞. 基于水力割缝卸压的煤岩与瓦斯动力灾害防控技术[J]. 煤炭科学技术,2021,49(4):133−141. doi: 10.13199/j.cnki.cst.2021.04.016

    ZHANG Yongjiang,HUANG Zhenfei,JI Fei. Coal rock and gas dynamic disaster prevention and control technology based on hydraulic slotting and pressure relief[J]. Coal Science and Technology,2021,49(4):133−141. doi: 10.13199/j.cnki.cst.2021.04.016
    [23]
    张永将,陆占金. 超高压水力割缝煤层增透成套装置研制及应用[J]. 煤炭科学技术,2020,48(10):97−104. doi: 10.13199/j.cnki.cst.2020.10.011

    ZHANG Yongjiang,LU Zhanjin. Development and application of a complete set of ultra-high pressure hydraulic slit coal seam permeability increasing device[J]. Coal Science and Technology,2020,48(10):97−104. doi: 10.13199/j.cnki.cst.2020.10.011
  • Related Articles

    [1]CHEN Benliang, YUAN Liang, XUE Sheng, JIANG Wenping, YANG Ke, ZHOU Tao, LI Dandan, WU Jing. Study on technology and effect of gas extraction in horizontal well with segmental hydraulic fracture in roof of coal seam in Huainan mining area[J]. COAL SCIENCE AND TECHNOLOGY, 2024, 52(4): 155-163. DOI: 10.12438/cst.2023-1937
    [2]ZHANG Mingjie, LI Yaxi, YAN Jiangwei, TAN Zhihong, LIU Kuanxiao. Determination of influence radius of hydraulic punch extraction by gas emission attenuation characteristic method[J]. COAL SCIENCE AND TECHNOLOGY, 2022, 50(7): 156-162.
    [3]ZHANG Fuwang, QIN Ruxiang, YANG Yingdi. Experimental study on gas extraction with intensive hydraulic punching and penetration enhancement[J]. COAL SCIENCE AND TECHNOLOGY, 2022, 50(4): 142-148.
    [4]BA Quanbin. Automatic drainage technology of downward drilling holes in parallel in water-bearing coal and rock seam[J]. COAL SCIENCE AND TECHNOLOGY, 2021, 49(12): 180-185.
    [5]MA Zhihui, PAN Rongkun, MA Zhiyong, LI Cong, HU Daimin. Study on gas leakage law and hole sealing technology of gas drainage in layered drilling[J]. COAL SCIENCE AND TECHNOLOGY, 2020, 48(8): 90-96.
    [6]CHEN Zhaoying, HAO Haijin, HAO Chunsheng, ZHAO Jinbin, TIAN Qingling. Study on combined extraction technology of underground longborehole and CBM ground-well fracturing[J]. COAL SCIENCE AND TECHNOLOGY, 2019, (8).
    [7]ZHANG Shuai LIU Zhiwei HAN Chengqiang WEILe ZHANG Fei, . Study on coal pressure relief and permeability increase through ultra-high pressure hydraulic slotting in high outburst and low permeability coal seam[J]. COAL SCIENCE AND TECHNOLOGY, 2019, (4).
    [8]Chen Zhaoying Wang Baoyu Hao Haijin Hao Chunsheng, . Analysis on drainage features and drainage effect of coalbed methane well in Sihe Block[J]. COAL SCIENCE AND TECHNOLOGY, 2017, (7).
    [9]Tao Yunqi Feng Dan Ma Geng Xu Jiang Peng Shoujian, . Study on physical simulation experiment of hydraulic borehole flushing and pressure released and permeability improved effect[J]. COAL SCIENCE AND TECHNOLOGY, 2017, (6).
    [10]WANG Bao-yu BAI Jian-ping HAO Chun-sheng CHEN Zhao-ying, . Effect analysis on fracturing of coalbed methane surface well and long distance borehole gas drainage technology in underground mine[J]. COAL SCIENCE AND TECHNOLOGY, 2015, (2).
  • Cited by

    Periodical cited type(19)

    1. 魏建平,校朋伟,张慧栋,陈长江,刘勇. 磨料水射流旋转切割煤岩最优参数匹配模型研究. 煤炭科学技术. 2025(01): 192-202 . 本站查看
    2. 陈芳. 水力冲孔技术在九鑫煤矿的应用研究. 能源与环保. 2025(02): 81-88 .
    3. 聂百胜,包松,柳先锋,刘鹏,张豪,何珩溢,李孜健,周皓文,贾雪祺,何学秋. 地面煤层气高强电爆震体积致裂技术及工程试验. 煤炭学报. 2025(01): 546-563 .
    4. 左伟芹,武圣杰,刘彦伟,龙丽群,贾浩杰,苗健,张世禧. 自吸环空流体式自激脉冲射流打击力时频特性试验研究. 煤炭科学技术. 2025(04): 300-311 . 本站查看
    5. 张鹏冲. 无保护层开采超高压水力增透抽采半径研究. 煤矿机械. 2025(06): 53-57 .
    6. 武强. 切顶留巷Y形通风方式下采空区漏风规律研究. 陕西煤炭. 2025(05): 47-50 .
    7. 刘勇,张汶定,陈长江,魏建平,徐向宇,张宏图,南勤聪,校朋伟. 松软煤层无水化增透理论及技术发展趋势. 煤炭学报. 2025(04): 2123-2146 .
    8. 郭瑜,杨程涛,马彦操,王飞,韩晓明,刘超峰,武腾飞. 底抽巷钻冲作业恒压供水系统在古汉山矿的应用. 能源与环保. 2025(05): 7-12 .
    9. 曹建军,刘军,王中华. 陕西省煤矿瓦斯灾害防治现状及对策研究. 中国煤炭. 2024(02): 35-43 .
    10. 季飞. 松软煤层水力割缝缝槽形态控制技术研究及应用. 能源与环保. 2024(02): 29-33+39 .
    11. 李树清,吕晨辉,黄飞,钱运来,黄向韬,赵天哲,汤铸,杨凤玲,王晨. 金刚石串珠绳锯切割煤层卸压增透效应研究. 煤炭学报. 2024(02): 785-800 .
    12. 王博,侯恩科,马良,孙四清,杜新峰,杨建超,王正喜,单元伟. 顶板水平井分段分簇压裂治理掘进巷道瓦斯模式研究. 煤炭科学技术. 2024(05): 114-126 . 本站查看
    13. 邹军. 低透气性突出煤层群首采层水力割缝卸压抽采技术研究. 中国煤炭. 2024(06): 52-58 .
    14. 郭勇. 可控冲击波强化增透技术在林华煤矿高瓦斯低渗透煤层的应用. 内蒙古煤炭经济. 2024(10): 168-170 .
    15. 刘永三. 超高压水射流割压联合技术试验分析. 陕西煤炭. 2024(07): 20-23+37 .
    16. 王想刚,张世范,许继宗,张吉福,陈国红,陈玉东,马占海. 高应力特厚突出煤层水力割缝卸压防突技术研究. 中国煤炭. 2024(10): 48-56 .
    17. 刘杰,赵长鑫,张浩,李志斌,王斌荣,潘如小. 白羊岭煤矿底抽巷穿层水力冲孔技术研究与应用. 煤炭科技. 2024(05): 169-175 .
    18. 双海清,张星,李宝军,林海飞,周斌,高海东,崔名威. 水射流割缝-注氮驱替联合促抽瓦斯模拟. 西安科技大学学报. 2024(06): 1030-1040 .
    19. 迟跃彬,褚俊洁,贾京飞,刘帅. 桑树坪二号井难抽采煤层瓦斯突出特征与防治. 陕西煤炭. 2023(05): 110-114 .

    Other cited types(8)

Catalog

    Article views (266) PDF downloads (324) Cited by(27)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return