Citation: | LI Guofu,ZHANG Suian,JI Changjiang,et al. Mechanism and technical system of ground and underground combined drainage of CBM in “four region linkage” in coal mining area[J]. Coal Science and Technology,2022,50(12):14−25. DOI: 10.13199/j.cnki.cst.mcq22-1076 |
In order to better realize the safe and efficient coordinated development of coal and CBM resources in high gassy mining areas, the four regions (planning region, preparation region, production region and coal mined-out region) linkage ground-underground combined drainage mode (new Jincheng mode) and a series of technical systems of CBM in the whole mining area, all stratum layer and all time were innovatively developed. Relying on the “Thirteen Five - Year Plan” national major science and technology projects to continue to tackle key problems, closely combining with the actual production of key coal mining areas in Shanxi Province. This new mode upgraded from the “three regions linkage” three-dimensional extraction mode of CBM developed during the “Eleventh Five-Year” and the “Twelfth Five-Year” Plan and it had been widely used in key coal mining areas of Shanxi Province and achieved good results. The ground pre-drainage technology of CBM in the planning area mainly used vertical wells, directional wells, horizontal wells and other technologies in the early stage. But now it had developed into a well factory intensive development mode and technology dominated by multi-fractured horizontal well. After 15 years of ground pre-drainage, the average reduction of No.3 coal seam in East Fifth Panel of Sihe Mine of Jinneng Holding Group had reached 55%. The No.5310 and No.5311 working faces in this panel had successfully completed safe and efficient coal mining, realizing low gas mining in high gas content coal seam. The ground-underground combined drainage technology of CBM in the preparation region made full use of the advantages of the greatly increased permeability in the fracturing affected area and the increased production pressure difference of underground open space drainage. Which formed a three-dimensional drainage network, improved the drainage efficiency, effectively alleviated the tension in the replacement of mining, and promoted high production and efficiency.Based on the characteristics of intense mining activities in the production area and full opening of underground projects, directional drilling rigs were used to accurately complete regional progressive seam drilling, through hole drilling, and high directional long borehole, and accurately and evenly extract the CBM in the production region. This effectively solved the problems of uncontrollable conventional drilling trajectory, easy to form blind areas for drainage, and poor drainage effect, and realized the accurate standard of underground drainage in the production region, ensuring no risk.In view of the problems such as unclear occurrence law of CBM resources in the coal mined-out region, difficulty in resource assessment, and lack of safe drilling and mining technology, the calculation method of CBM resources in the coal mined-out region was created. And a series of technologies for ground drilling and mining in coal mined-out region were developed. 129 wells had been demonstrated and promoted in Shanxi key coal mine areas such as Jincheng, Xishan, Yangquan, etc., 128 million cubic meters of CBM had been pumped and utilized, and 1.92 million tons of carbon dioxide had been reduced.The success of the ‘four region linkage’ ground-underground combined drainage mode and a series of technical systems in key coal mining areas of Shanxi had effectively achieved the triple effect of CBM “reducing greenhouse gas emissions, ensuring coal mine safety production, and supplementing green gas energy”. Which provided strong support for China’s CBM production to increase from 2.58 billion cubic meters in 2006 to 19.17 billion cubic meters in 2020. At the same time, it also provided an effective guarantee for the deepening of coal mining depth year by year in key coal mining areas of Shanxi Province, the increasingly complex mine production conditions, the continuous reduction of the number of production mines, and the steady growth of the total coal output.
[1] |
新华社. 国家煤矿安监局联手中国航天科技集团推进煤矿智能装备和机器人发展 [EB/OL].[2022-07-05] http://www.gov.cn/xinwen/2019-08/14/content_5421261.htm.
|
[2] |
张遂安. 采煤采气一体化理论与实践 [J]. 中国煤层气, 2006, 3(4): 14-16.
ZHANG Suian, Theory and practice of integrated coal mining and gas extraction [J]. China Coalbed Methane, 2006, 3(4): 14-16.
|
[3] |
陈志胜. 煤矿区煤层气综合开发与利用存在问题探讨[J]. 煤炭科学技术,2009,37(7):5−8. doi: 10.13199/j.cst.2009.07.10.chenzhsh.027
CHEN Zhisheng. Discussion on problems existing in comprehensive development and utilization of Coal Bed Methane in coal mining area[J]. Coal Science and Technology,2009,37(7):5−8. doi: 10.13199/j.cst.2009.07.10.chenzhsh.027
|
[4] |
雷 毅,申宝宏,刘见中. 煤矿区煤层气与煤炭协调开发模式初探[J]. 煤矿开采,2012,17(3):1−4. doi: 10.3969/j.issn.1006-6225.2012.03.001
Lei Yi,Shen Baohong,Liu Jianzhong. Initial discussion of coalbed methane and coal coordination mining mode[J]. Coal mining Technology,2012,17(3):1−4. doi: 10.3969/j.issn.1006-6225.2012.03.001
|
[5] |
申宝宏,刘见中,雷 毅. 我国煤矿区煤层气开发利用技术现状及展望[J]. 煤炭科学技术,2015,43(2):1−4. doi: 10.13199/j.cnki.cst.2015.02.001
SHEN Baohong,LIU Jianzhong,LEI Yi. Present status and prospect of coalbed methane development and utilization technology of coal mine area in China[J]. Coal Science and Technology,2015,43(2):1−4. doi: 10.13199/j.cnki.cst.2015.02.001
|
[6] |
张学超. 煤与煤层气协调开发煤层气井下抽采安全性评价[J]. 煤矿安全,2015,46(12):174−178. doi: 10.13347/j.cnki.mkaq.2015.12.050
ZHANG Xuechao. Evaluation of underground gas extraction safety based on coordinative development of coal and coalbed methane[J]. Safety in Coal Mines,2015,46(12):174−178. doi: 10.13347/j.cnki.mkaq.2015.12.050
|
[7] |
武华太. 煤矿区瓦斯三区联动立体抽采技术的研究和实践[J]. 煤炭学报,2011,36(8):1312−1316. doi: 10.13225/j.cnki.jccs.2011.08.022
WU Huatai. Study and practice on technology of three-zones linkage 3D coalbed methane drainage in coal mining area[J]. Journal of China Coal Society,2011,36(8):1312−1316. doi: 10.13225/j.cnki.jccs.2011.08.022
|
[8] |
李国富,何 辉,刘 刚,等. 煤矿区煤层气三区联动立体抽采理论与模式[J]. 煤炭科学技术,2012,40(10):7−11. doi: 10.13199/j.cst.2012.10.13.ligf.008
LI Guofu,HE Hui,LIU Gang,et al. Three region linkage three-dimensional gas drainage theory and mode of coal bed methane in coal mining area[J]. Coal Science and Technology,2012,40(10):7−11. doi: 10.13199/j.cst.2012.10.13.ligf.008
|
[9] |
李国富,李 波,焦海滨,等. 晋城矿区煤层气三区联动立体抽采模式[J]. 中国煤层气,2014,11(1):3−7. doi: 10.3969/j.issn.1672-3074.2014.01.001
LI Guofu,LI Bo,JIAO Haibin,et al. Three-region integrated CBM stereo-extraction in Jincheng mining area[J]. China Coalbed Methane,2014,11(1):3−7. doi: 10.3969/j.issn.1672-3074.2014.01.001
|
[10] |
孙景来. 煤与煤层气协调开发机制研究[J]. 煤炭科学技术,2014,42(10):62−65. doi: 10.13199/j.cnki.cst.2014.10.015
SUN Jinglai. Study on coordinative development mechanism of coal and coalbed methane[J]. Coal Science and Technology,2014,42(10):62−65. doi: 10.13199/j.cnki.cst.2014.10.015
|
[11] |
范喜生,张 浪,汪 东. 煤与煤层气协调开采的含义及关键问题定量分析[J]. 安全与环境学报,2016,16(2):123−127. doi: 10.13637/j.issn.1009-6094.2016.02.025
FAN Xisheng,ZHANG Lang,WANG Dong. Implication of the coordinative mining of coal and coal-bed methane and a quantitative analysis of the key problems involved[J]. Journal of Safety and Environment,2016,16(2):123−127. doi: 10.13637/j.issn.1009-6094.2016.02.025
|
[12] |
刘见中,沈春明,雷 毅,等. 煤矿区煤层气与煤炭协调开发模式与评价方法[J]. 煤炭学报,2017,42(5):1221−1229.
LIU Jianzhong,SHEN Chunming,LEI Yi. Coordinated development mode and evaluation method of coalbed methane and coal in coal mine area in China[J]. Journal of China Coal Society,2017,42(5):1221−1229.
|
[13] |
刘彦青,赵 灿,李国富,等. 晋城矿区煤与煤层气协调开发模式优化决策方法[J]. 煤炭学报,2020,45(7):2575−2589.
LIU Yanqing,ZHAO Can,LI Guofu,et al. Optimized decision method of coordinated development mode of coal and coalbed methane in Jincheng mining area[J]. Journal of China Coal Society,2020,45(7):2575−2589.
|
[14] |
李希建,徐明智. 近年我国煤与瓦斯突出事故统计分析及其防治措施[J]. 矿山机械,2010,38(10):13−16. doi: 10.16816/j.cnki.ksjx.2010.10.004
LI Xijian,XU Mingzhi. Statistics and analysis of domestic coal and gas outburst accidents in recent years and prevention measures[J]. Mining & Processing Equipment,2010,38(10):13−16. doi: 10.16816/j.cnki.ksjx.2010.10.004
|
[15] | |
[16] |
国家矿山安全监察局. 防治煤与瓦斯突出细则 [M]. 北京 : 煤炭工业出版社, 2019.
|
[17] |
刘见中,孙海涛,雷 毅,等. 煤矿区煤层气开发利用新技术现状及发展趋势[J]. 煤炭学报,2020,45(1):258−267. doi: 10.13225/j.cnki.jccs.YG19.1757
LIU Jianzhong,SUN Haitao,LEI Yi,et al. Current situation and development trend of coalbed methane development and utilization technology in coal mine area[J]. Journal of China Coal Society,2020,45(1):258−267. doi: 10.13225/j.cnki.jccs.YG19.1757
|
[18] |
王保玉,白建平,郝春生,等. 煤层气地面井压裂-井下长钻孔抽采技术效果分析[J]. 煤炭科学技术,2015,43(2):100−103. doi: 10.13199/j.cnki.cst.2015.02.023
WANG Baoyu,BAI Jianping,HAO Chunsheng,et al. Effect analysis on fracturing of coalbed methane surface well and long distance bore-hole gas drainage technology in underground mine[J]. Coal Science and Technology,2015,43(2):100−103. doi: 10.13199/j.cnki.cst.2015.02.023
|
[19] |
陈召英,郝海金,郝春生,等. 煤层气井地面压裂和井下长钻孔联合抽采技术研究[J]. 煤炭科学技术,2019,47(8):142−146. doi: 10.13199/j.cnki.cst.2019.08.018
CHEN Zhaoying,HAO Haijin,HAO Chunsheng,et al. Study on combined extraction technology of underground long borehole and CBM ground-well fracturing[J]. Coal Science and Technology,2019,47(8):142−146. doi: 10.13199/j.cnki.cst.2019.08.018
|
[20] |
袁 亮,杨 科. 再论废弃矿井利用面临的科学问题与对策[J]. 煤炭学报,2021,46(1):16−24. doi: 10.13225/j.cnki.jccs.yg20.1966
YUAN Liang,YANG Ke. Further discussion on the scientific problems and countermeasures in the utilization of abandoned mines[J]. Journal of China Coal Society,2021,46(1):16−24. doi: 10.13225/j.cnki.jccs.yg20.1966
|
[21] |
孟召平,李国富,田永东,等. 晋城矿区废弃矿井采空区煤层气地面抽采研究进展[J]. 煤炭科学技术,2022,50(1):204−211. doi: 10.3969/j.issn.0253-2336.2022.1.mtkxjs202201020
MENG Zhaoping,LI Guofu,TIAN Yongdong,et al. Research progress on surface drainage of coalbed methanein abandoned mine gobs of Jincheng mining area[J]. Coal Science and Technology,2022,50(1):204−211. doi: 10.3969/j.issn.0253-2336.2022.1.mtkxjs202201020
|
[22] |
孟召平,李国富,杨 宇,等. 晋城寺河井区煤矿采空区煤层气地面抽采关键技术研究[J]. 煤炭科学技术,2021,49(1):240−247. doi: 10.13199/j.cnki.cst.2021.01.020
MENG Zhaoping,LI Guofu,YANG Yu,et al. Study on key technology for surface extraction of coalbed methane in coal mine goaf from Sihe Wells Area, Jincheng[J]. Coal Science and Technology,2021,49(1):240−247. doi: 10.13199/j.cnki.cst.2021.01.020
|
1. |
田燚,王沉,刘雪岭,舒仕海,阮毅,王玉丽,彭英健,邓小虎. 基于博弈论组合赋权-云模型的煤与瓦斯突出危险性评价. 煤炭技术. 2025(04): 180-185 .
![]() | |
2. |
梁跃辉,石必明,岳基伟,钟珍,韩奇峻,张铖铖,彭杰,张海卿,梅文强. 带压环境下煤体瓦斯解吸特性及模型. 煤炭学报. 2025(03): 1569-1582 .
![]() | |
3. |
薛伟超,周少玺,康宁. 杨河煤业22161工作面区域煤与瓦斯突出危险性预测研究. 中国煤炭地质. 2025(03): 35-39+44 .
![]() | |
4. |
刘艺,卢守青,赵康,郝从猛,秦玉金,撒占友,刘杰,张永亮,张荣. 基于CiteSpace的煤与瓦斯突出预测指标文献综述与研究进展. 煤矿安全. 2025(05): 30-39 .
![]() | |
5. |
郭盼盼,毛润奇. 玉溪煤矿3号煤层局部突出预测敏感指标考察研究. 西部探矿工程. 2024(01): 64-66 .
![]() | |
6. |
焦先军,童校长,李明强. 开采保护层与预抽煤层瓦斯防突效果分析. 煤炭技术. 2024(02): 118-120 .
![]() | |
7. |
曹建军,刘军,王中华. 陕西省煤矿瓦斯灾害防治现状及对策研究. 中国煤炭. 2024(02): 35-43 .
![]() | |
8. |
王亮,李子威,郑思文,安丰华,赵伟,吴淞玮. 颗粒煤基质尺度计算新方法及应用. 煤炭科学技术. 2024(02): 115-125 .
![]() | |
9. |
郭彦磊,刘海滨,赵乾,龚凯,陈建,杜嘉奇. 煤与瓦斯突出过程气-固颗粒抛出规律及突出矿井风险等级划分方法. 煤矿安全. 2024(05): 51-60 .
![]() | |
10. |
胡金春,吕士磊,兰红,陈忠林,陆春辉. 龙潭组煤层群底组煤层综采工作面卸压瓦斯来源分析研究. 陕西煤炭. 2024(12): 110-113 .
![]() | |
11. |
张超林,刘明亮,王恩元,王培仲,姜巧真,曾伟. 煤层渗透性对煤与瓦斯突出的影响规律及控制机理. 煤炭学报. 2024(12): 4842-4854 .
![]() | |
12. |
张亚洲,单川. 敏感指标对瓦斯含量响应的变化规律研究. 能源与节能. 2023(02): 58-60 .
![]() | |
13. |
肖乔. 方山新井二_1煤层掘进工作面煤与瓦斯突出预测敏感指标及临界值确定. 煤炭技术. 2023(02): 122-125 .
![]() | |
14. |
杨三萍,刘鹏珍,卢卫永. 不同黏结剂掺量条件下型煤试样三轴压缩试验研究. 采矿与岩层控制工程学报. 2023(02): 46-54 .
![]() | |
15. |
孙娈娈,王中华. 突出煤层区域预测瓦斯含量临界值研究. 山东煤炭科技. 2023(03): 110-112 .
![]() | |
16. |
何志刚,邢祥,王振刚,谷晓亮. 红岭煤矿工作面突出预测敏感指标测定及应用. 中国矿山工程. 2023(02): 53-58+69 .
![]() | |
17. |
徐耀松,白济宁,王雨虹,阎馨,王丹丹. 基于CEEMDAN-DA-GRU的瓦斯涌出量预测模型. 传感技术学报. 2023(03): 441-448 .
![]() | |
18. |
李延河. 地面井分区式瓦斯抽采技术体系及工程实践. 煤炭科学技术. 2023(03): 100-108 .
![]() | |
19. |
杨琪,于岩斌,崔文亭,高成伟,张鑫,申家龙. 单轴压缩下煤岩细观结构参数表征及演化规律. 煤炭科学技术. 2023(04): 88-95 .
![]() | |
20. |
郭鑫. 寺河煤矿东井3号煤层突出预测敏感性指标研究. 煤炭与化工. 2023(06): 114-119 .
![]() | |
21. |
夏治华,汪国良. 兴隆煤矿工作面突出预测敏感指标及临界值研究. 江西煤炭科技. 2023(03): 136-139 .
![]() | |
22. |
梁运培,郑梦浩,李全贵,毛树人,栗小雨,李建波,周俊江. 我国煤与瓦斯突出预测与预警研究现状. 煤炭学报. 2023(08): 2976-2994 .
![]() | |
23. |
郭武奎,靳鹏. 大水头煤矿一采区瓦斯压力临界值考察研究. 山西化工. 2023(10): 127-130 .
![]() | |
24. |
张天军,孟钰凯,庞明坤,张磊,武晋宇. 有效应力对孔周破裂煤体渗透率演化规律的影响. 煤炭科学技术. 2023(S1): 122-131 .
![]() | |
25. |
谢亚东,吴琪璇,李作泉,张建江,权继业. 采动应力与工作面突出指标相关性分析. 中国安全科学学报. 2023(S2): 96-99 .
![]() | |
26. |
唐巨鹏,任凌冉,潘一山,张昕. 高地应力条件煤与瓦斯突出模拟试验研究. 煤炭科学技术. 2022(02): 113-121 .
![]() | |
27. |
周礼杰,陈亮,程志恒,艾国,孔德中,王蕾,王宏冰,郭凯. 突出厚煤层沿空掘巷煤柱留设宽度优化研究. 煤炭科学技术. 2022(03): 92-101 .
![]() | |
28. |
吕情绪,肖剑儒,满洋. 低瓦斯煤层高强综放开采工作面合理长度确定. 煤矿安全. 2022(05): 188-193 .
![]() | |
29. |
成小雨,龚选平,尉瑞,高涵,赵刚. 考虑煤体粒度的落煤瓦斯涌出预测模型研究. 中国安全生产科学技术. 2022(07): 61-67 .
![]() | |
30. |
朱墨然,王麒翔,张庆华. 多源数据驱动的防突预警指标自适应技术研究. 煤炭科学技术. 2022(08): 75-81 .
![]() | |
31. |
郝建峰,梁冰,孙维吉,石占山,施永威,赵航. 煤与瓦斯的热流固耦合关系研究现状及展望. 采矿与安全工程学报. 2022(05): 1051-1060+1070 .
![]() | |
32. |
杨威. 东曲矿瓦斯突出敏感指标预测及临界值研究. 煤. 2022(11): 38-39+48 .
![]() | |
33. |
迟羽淳,邹永洺. 敏感指标预测煤层瓦斯异常涌出应用分析. 中国矿业. 2022(11): 117-122 .
![]() | |
34. |
王林杉. 河南省某矿二_1煤层突出预测敏感指标及临界值研究. 内蒙古煤炭经济. 2022(20): 5-8 .
![]() | |
35. |
周银波,李晓丽,李晗晟,王佳乐,毛淑星,王世杰. 煤体吸附变形对3种气体渗透率演化的影响. 煤矿安全. 2021(11): 16-21 .
![]() | |
36. |
单大阔. 瓦斯为突出主导因素的煤层突出预测敏感指标及临界值考察. 煤. 2021(12): 20-22+93 .
![]() | |
37. |
孙际宏,左安家,魏超,陈江龙. 煤层突出危险性预测敏感指标考察确定. 华北科技学院学报. 2021(05): 33-39 .
![]() |