Citation: | LI Quangui,DENG Yize,HU Qianting,et al. Review and prospect of coal rock hydraulic fracturing physical experimental research[J]. Coal Science and Technology,2022,50(12):62−72. DOI: 10.13199/j.cnki.cst.mcq22-08 |
Physical simulation of hydraulic fracturing is an approximate representation of fracture evolution and its dynamic process, which represents an important direction of fracture evolution research. Similarity theory is the theoretical basis of the transformation between field prototype and experimental model. Test equipment and similar materials are the material premise of physical simulation experiment. Monitoring and detection technology is the key part to evaluate the fracturing effect of hydraulic fracturing. This paper summarizes the development of similarity theory of hydraulic fracturing physical experiments, the evolution of experimental materials and devices, and the characteristics and application scope of common monitoring and detection methods from the above three aspects. The analysis shows that: the similarity criterion of hydraulic fracturing has been preliminarily formed, but it needs to be further modified according to the physical and mechanical properties of coal and rock. Numerical simulation method can be used to explore the influence degree of minor factors ignored in the derivation of similarity criterion, so as to improve the reliability and applicability of the empirical equation. In view of various physical and mechanical properties of coal and rock, many empirical formula equations of similar materials have been obtained at present, but a set of detailed experimental specification and a large number of experimental attempts are still needed to improve the repeatability of the experiments, so as to establish a more universal database of empirical equations of similar material matching. Fracturing devices are developing towards the direction of multi-field coupling with more simulation conditions, larger simulation scale and wider simulation range, and fracturing methods are gradually diversified with engineering applications. However, the accuracy of triaxial loading of fracturing devices needs to be further improved to ensure effective fracturing experiments under high stress conditions, and reduce the impact of experimental operations on the final results. Monitoring methods and detection technologies have their own advantages in evaluating the fracturing effect of hydraulic fracturing, and similar materials also have a significant impact on the effectiveness and accuracy of monitoring methods and detection technologies. How to rationally select and combine monitoring methods and detection technologies based on experiments is the key to meet the research needs of micro-structures.
[1] |
ZHANG Yuebing,LI Quangui,HU Qianting,et al. Pore wetting process characterization of equal-sized granular coals by using LF-NMR technology[J]. Fuel,2022,313:107887.
|
[2] |
LU Yiyu,CHENG Yugang,GE Zhaolong,et al. Determination of fracture initiation locations during cross-measure drilling for hydraulic fracturing of coal seams[J]. Energies,2016,9(5):358. doi: 10.3390/en9050358
|
[3] |
王 海,杨兆中,李 岳,等. 沁水盆地深部复杂结构煤储层钻完井及压裂工艺研究[J]. 煤炭科学技术,2019,47(9):105−111.
WANG Hai,YANG Zhaozhong,LI Yue,et al. Study on drilling and fracturing technology for deep complex structure coal reservior in Qinshui Basin[J]. Coal Science and Technology,2019,47(9):105−111.
|
[4] |
HU Qianting,JIANG Zhizhong,LI Quangui,et al. Induced stress evolution of hydraulic fracturing in an inclined soft coal seam gas reservoir near a fault[J]. Journal of Natural Gas Science and Engineering,2021,88:103794. doi: 10.1016/j.jngse.2021.103794
|
[5] |
WU Caifang,ZHANG Xiaoyang,WANG Meng,et al. Physical simulation study on the hydraulic fracture propagation of coalbed methane well[J]. Journal of Applied Geophysics,2018,150:244−253. doi: 10.1016/j.jappgeo.2018.01.030
|
[6] |
HU Qianting,LIU Le,LI Quangui,et al. Experimental investigation on crack competitive extension during hydraulic fracturing in coal measures strata[J]. Fuel,2020,265:117003. doi: 10.1016/j.fuel.2019.117003
|
[7] |
李全贵,邓羿泽,胡千庭,等. 煤层水力压裂应力与裂隙演化的细观规律[J]. 煤田地质与勘探,2022,50(6):32−40. doi: 10.12363/issn.1001-1986.21.10.0603
LI Quangui,DENG Yize,HU Qianting,et al. Mesoscopic law of stress and fracture evolution of coal seams hydraulic fracturing[J]. Coal Geology & Exploration,2022,50(6):32−40. doi: 10.12363/issn.1001-1986.21.10.0603
|
[8] |
WANG Haiyang,XIA Binwei,LU Yiyu,et al. Study on the propagation laws of hydrofractures meeting a faulted structure in the coal seam[J]. Energies,2017,654(10):2−17. doi: 10.3390/en10050654
|
[9] |
李贤忠,林柏泉,翟 成,等. 单一低透煤层脉动水力压裂脉动波破煤岩机理[J]. 煤炭学报,2013,38(6):918−923. doi: 10.13225/j.cnki.jccs.2013.06.016
LI Xianzhong,LIN Boquan,ZHAI Cheng,et al. The mechanism of breaking coal and rock by pulsating pressure wave in single low permeability seam[J]. Journal of China Coal Society,2013,38(6):918−923. doi: 10.13225/j.cnki.jccs.2013.06.016
|
[10] |
林柏泉,孟 杰,宁 俊,等. 含瓦斯煤体水力压裂动态变化特征研究[J]. 采矿与安全工程学报,2012(1):106−110. doi: 10.3969/j.issn.1673-3363.2012.01.019
LIN Baiquan,MENG Jie,NING Jun,et al. Research on dynamic characteristics of hydraulic fracturing in coal body containing gas[J]. Journal of Mining & Safety Engineering,2012(1):106−110. doi: 10.3969/j.issn.1673-3363.2012.01.019
|
[11] |
徐 挺. 相似理论与模型试验[M]. 北京: 中国农业机械出版社, 1982.
|
[12] |
杨景贺. 相似材料模型试验应力测试装置的研制及应用[J]. 煤炭科学技术,2019,47(4):114−119. doi: 10.13199/j.cnki.cst.2019.04.019
YANG Jinghe. Research and application of stress testing apparatus for similar material model test[J]. Coal Science and Technology,2019,47(4):114−119. doi: 10.13199/j.cnki.cst.2019.04.019
|
[13] |
袁 飞,周佩玲,黄志安,等. 采空区氧化-升温耦合模拟相似准则及传热相似性研究[J]. 煤炭学报,2017,42(S2):398−406. doi: 10.13225/j.cnki.jccs.2016.1848
YUAN Fei,ZHOU Peiling,HUANG Zhian,et al. Similarity criterion and heat transfer similarity of oxidation temperature coupled simulation in gob[J]. Journal of China Coal Society,2017,42(S2):398−406. doi: 10.13225/j.cnki.jccs.2016.1848
|
[14] |
DE PATER C J,WEIJERS L,CLEARY M P,et al. Experimental verification of dimensional analysis for hydraulic fracturing[J]. SPE Production and Facilities,1992,32(5):230−238.
|
[15] |
柳贡慧,庞 飞,陈治喜. 水力压裂模拟试验中的相似准则[J]. 石油大学学报(自然科学版),2000,24(5):45−48.
LIU Gonghui,PANG Fei,CHEN Zhixi. Similarity criteria in hydraulic fracturing simulation experiments[J]. Journal of the University of Petroleum, China,2000,24(5):45−48.
|
[16] |
郭天魁,刘晓强,顾启林. 射孔井水力压裂模拟试验相似准则推导[J]. 中国海上油气,2015,27(3):108−112.
GUO Tiankui,LIU Xiaoqiang,GU Qilin. Derivation of similarity criteria for hydraulic fracturing simulated experiments of perforated wells[J]. China Offshore Oil and Gas,2015,27(3):108−112.
|
[17] |
YANG Chen,ZHOU Fujian,FENG Wei,et al. Plugging mechanism of fibers and particulates in hydraulic fracture[J]. Journal of Petroleum Science and Engineering,2019,176:396−402. doi: 10.1016/j.petrol.2019.01.084
|
[18] |
桑树勋,周效志,刘世奇,等. 应力释放构造煤煤层气开发理论与关键技术研究进展[J]. 煤炭学报,2020,45(7):2531−2543. doi: 10.13225/j.cnki.jccs.DZ20.0754
SANG Shuxun,ZHOU Xiaozhi,LIU Shiqi,et al. Research advances in theory and technology of the stress release applied extraction of coalbed methane from tectonically deformed coals[J]. Journal of China Coal Society,2020,45(7):2531−2543. doi: 10.13225/j.cnki.jccs.DZ20.0754
|
[19] |
侯振坤. 龙马溪组页岩水力压裂试验及裂缝延伸机理研究[D]. 重庆: 重庆大学, 2018.
HOU Zhenkun. Research on hydraulic fracturing tests and mechanism of crack extension of longmaxi shale[D]. Chongqing : Chongqing University, 2018.
|
[20] |
谭 鹏,金 衍,侯 冰,等. 煤岩定向井水力裂缝起裂及非平面扩展试验[J]. 石油勘探与开发,2017,44(3):439−445.
TAN Peng,JIN Yan,HOU Bing,et al. Experimental investigation on fracture initiation and non-planar propagation of hydraulic fractures in coal seams[J]. Petroleum Exploration and Development,2017,44(3):439−445.
|
[21] |
邓广哲,王世斌,黄炳香. 煤岩水压裂缝扩展行为特性研究[J]. 岩石力学与工程学报,2004,27(20):3489−3493. doi: 10.3321/j.issn:1000-6915.2004.20.018
DENG Guangzhe,WANG Shibin,HUANG Bingxiang. Study on the behavior of hydraulic fracture propagation in coal and rock[J]. Chinese Journal of Rock Mechanics and Engineering,2004,27(20):3489−3493. doi: 10.3321/j.issn:1000-6915.2004.20.018
|
[22] |
HOU Jirui,ZHENg Zeyu,SONG Zhaojie,et al. Three-dimensional physical simulation and optimization of water injection of a multi-well fractured-vuggy unit[J]. Petroleum Science,2016,13(2):259−271. doi: 10.1007/s12182-016-0079-4
|
[23] |
孟尚志,侯 冰,张 健,等. 煤系“三气”共采产层组压裂裂缝扩展物模试验研究[J]. 煤炭学报,2016,41(1):221−227.
MENG Shangzhi,HOU Bing,ZHANG Jian,et al. Experimental research on hydraulic fracture propagation through mixed layers of shale tight sand and coal seam[J]. Journal of China Coal Society,2016,41(1):221−227.
|
[24] |
史小萌,刘保国,亓 轶. 水泥石膏胶结相似材料在固-流耦合试验中的适用性[J]. 岩土力学,2015,36(9):2624−2630. doi: 10.16285/j.rsm.2015.09.024
SHI Xiaomeng,LIU Baoguo,QI Yi. Applicability of similar materials bonded by cement and plaster in solid-liquid coupling tests[J]. Rock and Soil Mechanics,2015,36(9):2624−2630. doi: 10.16285/j.rsm.2015.09.024
|
[25] |
孙海涛,朱墨然,曹 偈,等. 突出煤层相似材料配比模型构建的正交试验研究[J]. 煤炭科学技术,2019,47(8):116−122. doi: 10.13199/j.cnki.cst.2019.08.014
SUN Haitao,ZHU Moran,CAO Jie,et al. Orthogonal experimental study on proportioning model construction of similar materials of outburst coal seam[J]. Coal Science and Technology,2019,47(8):116−122. doi: 10.13199/j.cnki.cst.2019.08.014
|
[26] |
刘金辉,李文枭,刘宇森,等. 多孔含水岩层的相似材料配比研究[J]. 岩土力学,2018,39(2):657−664. doi: 10.16285/j.rsm.2016.0421
LIU Jinhui,LI Wenxiao,LIU Yusen,et al. A method for determining the ratio of similar material to simulate porous water-bearing stratum[J]. Rock and Soil Mechanics,2018,39(2):657−664. doi: 10.16285/j.rsm.2016.0421
|
[27] |
LIU Shiliang,LIU Weitao. Experimental development process of a new fluid–solid coupling similar-material based on the orthogonal test[J]. Processes,2018,6(11):211. doi: 10.3390/pr6110211
|
[28] |
史小萌,刘保国,肖 杰. 水泥和石膏胶结相似材料配比的确定方法[J]. 岩土力学,2015(5):1357−1362. doi: 10.16285/j.rsm.2015.05.017
SHI Xiaomeng,LIU Baoguo,XIAO Jie. Amethod for determining the ratio of similar materials with cement and plaster as bonding agents[J]. Rock and Soil Mechanics,2015(5):1357−1362. doi: 10.16285/j.rsm.2015.05.017
|
[29] |
石欣雨,文国军,白江浩,等. 煤岩水力压裂裂缝扩展物理模拟试验[J]. 煤炭学报,2016,41(5):1145−1151.
SHI Xinyu,WEN Guojun,BAI Jianghao,et al. A physical simulation experiment on fracture propagation of coal petrography in hydraulic fracturing[J]. Journal of China Coal Society,2016,41(5):1145−1151.
|
[30] |
HUANG Bingxiang,LIU Jiangwei. Experimental investigation of the effect of bedding planes on hydraulic fracturing under true triaxial stress[J]. Rock Mechanics and Rock Engineering,2017,50(10):2627−2643. doi: 10.1007/s00603-017-1261-8
|
[31] |
张 彤. 旋转式三轴加载液压伺服系统的研制[D]. 天津: 天津工业大学, 2017.
ZHANG Tong. Development of rotary three-axis loading hydraulic servo system[D]. Tianjin: Tiangong University, 2017.
|
[32] |
尹光志,李铭辉,许 江,等. 多功能真三轴流固耦合试验系统的研制与应用[J]. 岩石力学与工程学报,2015(12):2436−2445. doi: 10.13722/j.cnki.jrme.2015.0050
YIN Guangzhi,LI Minghui,XU Jiang,et al. Development and application of multifunctional true triaxial fluid-solid coupling test system[J]. Chinese Journal of Rock Mechanics and Engineering,2015(12):2436−2445. doi: 10.13722/j.cnki.jrme.2015.0050
|
[33] |
王维德. 煤体水力压裂声发射监测及失稳破裂特征试验研究[D]. 淮南: 安徽理工大学, 2016.
WANG Weide. Experimental study on acoustic emission monitoring and fracture instability characteristic during hydraulic fracturing in coal[D]. Huainan: Anhui University of Science & Technology, 2016.
|
[34] |
肖晓春,丁 鑫,潘一山,等. 含瓦斯煤岩真三轴多参量试验系统研制及应用[J]. 岩土力学,2018,39(S2):451−462. doi: 10.16285/j.rsm.2018.1312
XIAO Xiaochun,DING Xin,PAN Yishan,et al. Development and application of true triaxial and multiparameter experimental system for coal rock containing methane[J]. Rock and Soil Mechanics,2018,39(S2):451−462. doi: 10.16285/j.rsm.2018.1312
|
[35] |
马衍坤,刘泽功,成云海,等. 煤体水力压裂过程中孔壁应变及电阻率响应特征试验研究[J]. 岩石力学与工程学报,2016(S1):2862−2868. doi: 10.13722/j.cnki.jrme.2015.0157
MA Yankun,LIU Zegong,CHENG Yunhai,et al. Laboratory test research on borehole strain and electrical resistivity response characteristic of coal samples in hydraulic fracture process[J]. Chinese Journal of Rock Mechanics and Engineering,2016(S1):2862−2868. doi: 10.13722/j.cnki.jrme.2015.0157
|
[36] |
姜玉龙,梁卫国,李治刚,等. 煤岩组合体跨界面压裂及声发射响应特征试验研究[J]. 岩石力学与工程学报,2019,38(5):875−887. doi: 10.13722/j.cnki.jrme.2018.1192
JIANG Yulong,LIANG Weiguo,LI Zhigang,et al. Experimental study on fracturing across coal-rock interface and the acoustic emission response characteristics[J]. Chinese Journal of Rock Mechanics and Engineering,2019,38(5):875−887. doi: 10.13722/j.cnki.jrme.2018.1192
|
[37] |
袁 亮,王 伟,王汉鹏,等. 巷道掘进揭煤诱导煤与瓦斯突出模拟试验系统[J]. 中国矿业大学学报,2020,49(2):205−214. doi: 10.13247/j.cnki.jcumt.001121
YUAN Liang,WANG Wei,WANG Hanpeng,et al. A simulation system for coal and gas outburst induced by coal uncovering in roadway excavation[J]. Journal of China University of Mining & Technology,2020,49(2):205−214. doi: 10.13247/j.cnki.jcumt.001121
|
[38] |
周 彤. 层状页岩气储层水力压裂裂缝扩展规律研究[D]. 北京: 中国石油大学(北京), 2017.
ZHOU Tong. Investigation of hydraulic fracture propagation mechanism in laminated shale gas reservoirs[D]. Beijing : China University of Petroleum, Beijing , 2017.
|
[39] |
解经宇,蒋国盛,王荣璟,等. 射孔对页岩水力裂缝形态影响的物理模拟试验[J]. 煤炭学报,2018,43(3):776−783.
XIE Jingyu,JIANG Guosheng,WANG Rongjing,et al. Experimental investigation on the influence of perforation on the hydraulic fracture geometry in shale[J]. Journal of China Coal Society,2018,43(3):776−783.
|
[40] |
刘 东,许 江,尹光志,等. 多场耦合煤层气开采物理模拟试验系统的研制和应用[J]. 岩石力学与工程学报,2014(S2):3505−3514.
LIU Dong,XU Jiang,YIN Guangzhi,et al. Development and application of multi-field coupling test system for coal-bed methane(CBM) exploitation[J]. Chinese Journal of Rock Mechanics and Engineering,2014(S2):3505−3514.
|
[41] |
程玉刚. 煤层水压裂缝导向扩展控制机理及方法[D]. 重庆: 重庆大学, 2018.
CHENG Yugang. The mechanism and method of direction hydraulic fracturing in coal seam[D]. Chongqing: Chongqing University, 2018.
|
[42] |
CHENG Yugang,LU Yiyu,GE Zhaolong,et al. Experimental study on crack propagation control and mechanism analysis of directional hydraulic fracturing[J]. Fuel,2018,218:316−324. doi: 10.1016/j.fuel.2018.01.034
|
[43] |
姜在炳,李浩哲,方良才,等. 紧邻碎软煤层顶板水平井分段穿层压裂裂缝延展机理[J]. 煤炭学报,2020,45(S2):922−931.
JIANG Zaibing,LI Haozhe,FANG Liangcai,et al. Fracture propagation mechanism of staged through-layer fracturing for horizontal well in roof adjacent to broken-soft coal seams[J]. Journal of China Coal Society,2020,45(S2):922−931.
|
[44] |
张 群,葛春贵,李 伟,等. 碎软低渗煤层顶板水平井分段压裂煤层气高效抽采模式[J]. 煤炭学报,2018,43(1):150−159. doi: 10.13225/j.cnki.jccs.2017.1422
ZHANG Qun,GE Chungui,LI Wei,et al. A new model and application of coalbed methane high efficiency production from broken soft and low permeable coal seam by roof strata-in horizontal well and staged hydraulic fracture[J]. Journal of China Coal Society,2018,43(1):150−159. doi: 10.13225/j.cnki.jccs.2017.1422
|
[45] |
ZHAI Cheng,YU Xu,XIANG Xianwei,et al. Experimental study of pulsating water pressure propagation in CBM reservoirs during pulse hydraulic fracturing[J]. Journal of Natural Gas Science and Engineering,2015,25:15−22. doi: 10.1016/j.jngse.2015.04.027
|
[46] |
李全贵,林柏泉,翟 成,等. 煤层脉动水力压裂中脉动参量作用特性的试验研究[J]. 煤炭学报,2013,38(7):1185−1190.
LI Quangui,LIN Baiquan,ZHAI Cheng,et al. Experimental study on action characteristic of pulsating parameters in coal seam pulse hydraulic fracturing[J]. Journal of China Coal Society,2013,38(7):1185−1190.
|
[47] |
李全贵,武晓斌,翟 成,等. 脉动水力压裂频率与流量对裂隙演化的作用[J]. 中国矿业大学学报,2021,50(6):1067−1076. doi: 10.3969/j.issn.1000-1964.2021.6.zgkydxxb202106006
LI Quangui,WU Xiaobin,ZHAI Cheng,et al. Effect of frequency and flow rate of pulsating hydraulic fracturing on fracture evolution[J]. Journal of China University of Mining and Technology,2021,50(6):1067−1076. doi: 10.3969/j.issn.1000-1964.2021.6.zgkydxxb202106006
|
[48] |
梁天成,刘云志,付海峰,等. 多级循环泵注水力压裂模拟试验研究[J]. 岩土力学,2018(S1):355−361.
LIANG Tiancheng,LIU Yunzhi,FU Haifeng,et al. Experimental study of hydraulic fracturing simulation for multistage circulating pump injection[J]. Rock and Soil Mechanics,2018(S1):355−361.
|
[49] |
吴晶晶,张绍和,孙平贺,等. 煤岩脉动水力压裂过程中声发射特征的试验研究[J]. 中南大学学报(自然科学版),2017,48(7):1866−1874.
WU Jingjing,ZHANG Shaohe,SUN Pinghe,et al. Experimental study on acoustic emission characteristics in coal seam pulse hydraulic fracturing[J]. Journal of Central South University (Science and Technology),2017,48(7):1866−1874.
|
[50] |
郭跃辉,雷东记,张玉贵,等. 水力压裂煤体复电阻率频散特征试验研究[J]. 煤炭科学技术,2021,49(5):198−202.
GUO Yuehui,LEI Dongji,ZHANG Yugui,et al. Experimental study on dispersion characteristics of complex resistivity of hydraulic fracturing coal[J]. Coal Science and Technology,2021,49(5):198−202.
|
[51] |
武绍江,王一博,梁 兴,等. 页岩气储层水平井压裂分布式光纤邻井微振动监测及震源位置成像[J]. 地球物理学报,2022,65(7):2756−2765. doi: 10.6038/cjg2022P0658
WU Shaojiang,WANG Yibo,LIANG Xing,et al. Distributed fiber optic micro-vibration monitoring in offset-well and microseismic source location imaging during horizontal well fracturing in shale gas reservoir[J]. Chinese Journal of Geophysics,2022,65(7):2756−2765. doi: 10.6038/cjg2022P0658
|
[52] |
隋微波,刘荣全,崔 凯. 水力压裂分布式光纤声波传感监测的应用与研究进展[J]. 中国科学:技术科学,2021,51(4):371−387.
SUI Weibo,LIU Rongquan,CUI Kai. Application and research progress of distributed optical fiber acoustic sensing monitoring for hydraulic fracturing[J]. Scientia Sinica(Technologica),2021,51(4):371−387.
|
[53] |
鲍先凯,杨东伟,段东明,等. 高压电脉冲水力压裂法煤层气增透的试验与数值模拟[J]. 岩石力学与工程学报,2017(10):2415−2423.
BAO Xiankai,YANG Dongwei,DUAN Dongming,et al. The experiment and numerical simulation of penetration of coalbed methane upon hydraulic fracturing under high-voltage electric pulse[J]. Chinese Journal of Rock Mechanics and Engineering,2017(10):2415−2423.
|
[54] |
武鹏飞. 煤岩复合体水压致裂裂纹扩展规律试验研究[D]. 太原: 太原理工大学, 2017.
WU Pengfei. Experimental investigation on the crack propagation of hydraulic fracturing in coal-rock combination[D]. Taiyuan: Taiyuan University of Technology, 2017.
|
[55] |
倪冠华. 脉动压裂过程中瓦斯微观动力学特性及液相滞留机制研究[D]. 徐州: 中国矿业大学, 2015.
NI Guanhua. Microscopic kinetics characteristics of methane under pulsating hydraulic fracturing and mechanism of liquid retention effect[D]. Xuzhou: China University of Mining and Technology, 2015.
|
[56] |
马 耕,张 帆,刘 晓,等. 裂缝性储层中水力裂缝扩展规律的试验研究[J]. 采矿与安全工程学报,2017(5):993−999.
MA Geng,ZHANG Fan,LIU Xiao,et al. Experimental study on hydraulic fracture propagation in fractured reservoir[J]. Journal of Mining & Safety Engineering,2017(5):993−999.
|
[57] |
刘 奇. 天然页岩水力压裂过程中裂缝起裂方式及扩展规律试验研究[D]. 辽宁: 辽宁工程技术大学, 2019.
LIU Qi. Experimental study on fracture initiation mode and propagation law of natural shale during hydraulic fracturing[D]. Liaoning : Liaoning Technical University, 2019.
|
[58] |
程庆迎. 低透煤层水力致裂增透与驱赶瓦斯效应研究[D]. 徐州: 中国矿业大学, 2012.
CHENG Qingying. Research on permeability improvement and methane driven effect of hydraulic fracturing for low permeability coal seam[D]. Xuzhou : China University of Mining and Technology, 2012.
|
[59] |
鞠 杨,谢和平,郑泽民,等. 基于3D打印技术的岩体复杂结构与应力场的可视化方法[J]. 科学通报,2014,59(32):3109−3119. doi: 10.1360/csb2014-59-32-3109
JU Yang,XIE Heping,ZHENG Zemin,et al. Visualization of the complex structure and stress field inside rock by means of 3D printing technology[J]. Chinese Science Bulletin,2014,59(32):3109−3119. doi: 10.1360/csb2014-59-32-3109
|
[60] |
SAMPATH K H S M,PERERA M S A,ELSWORTH D,et al. Effect of coal maturity on CO2-based hydraulic fracturing process in coal seam gas reservoirs[J]. Fuel,2019,236:179−189. doi: 10.1016/j.fuel.2018.08.150
|
1. |
徐洲,孔祥伟,谢昕,王存武,王晨月. 天然裂缝和层理的角度对深煤层水力裂缝扩展的影响. 断块油气田. 2025(03): 493-501 .
![]() | |
2. |
柴望阳,李文达,梁卫国,王在勇,任森涛,落弘业. 煤系储层N_2泡沫压裂裂缝垂向跨界面扩展与渗透性特征研究. 岩石力学与工程学报. 2025(06): 1596-1611 .
![]() | |
3. |
高魁,王有为,乔国栋,田宇,傅师贵. 构造煤层顶板爆破跨界面致裂增透机制研究及应用. 煤田地质与勘探. 2024(04): 35-46 .
![]() | |
4. |
陆泳鑫,胡胜勇,李国富,武玺,路佳旗,杨育涛,张村,苏燕. 采空区下伏煤层水力压裂试验研究与应用. 煤炭科学技术. 2024(04): 231-242 .
![]() | |
5. |
王博,侯恩科,马良,孙四清,杜新峰,杨建超,王正喜,单元伟. 顶板水平井分段分簇压裂治理掘进巷道瓦斯模式研究. 煤炭科学技术. 2024(05): 114-126 .
![]() | |
6. |
徐洲,谢昕,孔祥伟,姜国富. 横向切槽几何形状对煤岩水力裂缝扩展影响分析. 能源与环保. 2024(05): 257-262+270 .
![]() | |
7. |
郭勇. 可控冲击波强化增透技术在林华煤矿高瓦斯低渗透煤层的应用. 内蒙古煤炭经济. 2024(10): 168-170 .
![]() | |
8. |
程士宜. 不同温度-冲击载荷下煤的渗透率演化规律研究. 煤矿安全. 2024(08): 43-50 .
![]() | |
9. |
姜永东,谢成龙,宋晓,刘正杰. 真三轴下砂岩水力压裂物理模拟与声发射特征. 地下空间与工程学报. 2024(04): 1145-1151+1159 .
![]() | |
10. |
黄恒,牛向东,杨朝义,侯克鹏,魏银鸿,郭祖江. 普朗铜矿出矿口封堵分渗材料性能试验研究. 采矿技术. 2024(05): 236-241 .
![]() | |
11. |
袁亮,马衍坤,黄勤豪,陈佩圆,罗吉安,龚彦华,王庆平. 煤岩动力灾害模型试验灾变地层模拟材料研制现状与展望. 中国矿业大学学报. 2024(05): 827-856 .
![]() | |
12. |
杨洪增,刘连伏,任伟,卢志敏,宋佳,刘艳. 坚硬顶板定向水力压裂切顶机理及应用. 能源与环保. 2024(09): 281-286 .
![]() | |
13. |
程士宜. 冲击压裂下钻孔极限力学行为规律研究与应用. 建井技术. 2024(05): 62-65 .
![]() | |
14. |
鲍先凯,姜斌,张武,宋翔宇,赵金昌,于超云,张童. 激波脉动荷载作用下煤岩体动态损伤特征. 煤炭科学技术. 2024(12): 204-223 .
![]() | |
15. |
李贵山,于振锋,杨晋东,宋新亚,郭琛. 沁水盆地郑庄区块煤层气水平井钻井体系优化. 煤炭科学技术. 2023(04): 118-126 .
![]() | |
16. |
孙如达,夏永学,高家明. 中高位厚硬顶板长孔水力压裂防冲效果研究. 煤矿安全. 2023(07): 69-77 .
![]() | |
17. |
张超林,蒲静轩,宋世豪,严吉立,陆杰. 煤与瓦斯突出两相流运移规律研究进展. 煤炭科学技术. 2023(08): 129-139 .
![]() |