SUN Haitao,SHU Longyong,JIANG Zaibing,et al. Progress and trend of key technologies of CBM development and utilization in China coal mine areas[J]. Coal Science and Technology,2022,50(12):1−13
. DOI: 10.13199/j.cnki.cst.mcq2022-1641Citation: |
SUN Haitao,SHU Longyong,JIANG Zaibing,et al. Progress and trend of key technologies of CBM development and utilization in China coal mine areas[J]. Coal Science and Technology,2022,50(12):1−13 . DOI: 10.13199/j.cnki.cst.mcq2022-1641 |
The key to coordinated development of coal mine methane and coal is to coordinate the spatio-temporal relationship between coal mining and coal mine methane development. During the “11th Five-Year Plan” and “13th Five-Year Plan” period, relying on the overall implementation of the national major science and technology project “Development of large oil and gas fields and coal mine methane”, the coordinated development mechanism of coal mine methane and coal in coal mining areas has made great progress. The development mechanism of coal mine methane in coal mine area is formed by “gas drainage”, “coal mine methane extraction”, “combination of ground development and underground extraction” and so on to ensure the safety of coal mine production. By defining the scope of coordinated development of coal mine methane and coal, establishing the evaluation method of coordinated development of coal mine methane and coal, forming the optimization decision-making platform of coordinated development of coal mine methane and coal, the concept of coordinated development of coal mine methane and coal in coal mine area based on “coordinated development, quality and efficiency improvement, technical support, platform decision-making, integrated demonstration” was put forward. Relying on the coordinated development technology system of coal mine methane and coal, as well as a complete set of technologies such as efficient extraction and effective utilization of coal mine methane in coal mining areas, Formation of coal-bed methane mining area in shanxi area “four linkage” global coordination development mode, huaibei mining area coal seam group of coal mine methane (CBM) three-dimensional joint development pattern, the complex soft Songzao mining area coal seam ahead of anti-reflection coordinated development pattern, Xinjiang mining area coal group “trinity” of large dip Angle coordinate development mode, leading to the coal mining area of coal bed methane development practice. The coordinated development mechanism, model and application of coal mine methane and coal in coal mine area have led the scientific and technological innovation of coal mine methane industry in coal mine area, and significantly improved the level of coal mine methane development and utilization in coal mine area. With the adjustment of national energy strategy, the implementation of the strategy of “double carbon” and the new requirements of the new situation, such as construction of ecological civilization coal mining area of coal bed methane development faces new challenges, new demand on promoting fine coal mining area of coal mine methane geological exploration and underground coal bed methane efficient development, abandoned mine coal mine methane extraction, such as coal gas together, a total of mining technology research and development, To construct a new technology body for clean and efficient development of coal mine methane and coal in coal mine area
[1] |
矿区煤层气开发项目组. 煤层气与煤炭协调开发理论与技术[M]. 北京: 科学出版社, 2021: 1–63.
Coal mine gas development project group. Theory and technology of coordinated development of coalbed methane and coal resources[M]. Beijing: Science Press, 2021: 1–63.
|
[2] |
程爱国,孙 杰. 全国煤炭资源潜力评价[J]. 中国科技成果,2019(2):15−16.
CHENG Aiguo,SUN Jie. National coal resource potential evaluation[J]. China’s Scientific and Technological Achievements,2019(2):15−16.
|
[3] |
国土资源部油气资源战略研究中心. 全国煤层气资源评价[M]. 北京: 中国矿业大学出版社, 2009: 1–229.
Strategic research center of oil and gas resources, ministry of land and resources. Coal mine methane resources of China[M].Beijing: China University of Mining & Technology Press, 2009: 1–229.
|
[4] |
刘见中,孙海涛,雷 毅,等. 煤矿区煤层气开发利用新技术现状及发展趋势[J]. 煤炭学报,2020,45(1):258−267.
LIU Jianzhong,SUN Haitao,LEI Yi,et al. Current situation and development trend of coal bed methane development and utilization technology in coal mine area[J]. Journal of China Coal Society,2020,45(1):258−267.
|
[5] |
申宝宏,刘见中,雷 毅. 我国煤矿区煤层气开发利用技术现状及展望[J]. 煤炭科学技术,2015,43(2):1−4. doi: 10.13199/j.cnki.cst.2015.02.001
SHEN Baohong,LIU Jianzhong,LEI Yi. Present status and prospects of coal mine methane development and utilization technology of coal mine area in China[J]. Coal Science and Technology,2015,43(2):1−4. doi: 10.13199/j.cnki.cst.2015.02.001
|
[6] |
刘见中,沈春明,雷 毅,等. 煤矿区煤层气与煤炭协调开发模式与评价方法[J]. 煤炭学报,2017,42(5):1221−1229. doi: 10.13225/j.cnki.jccs.2016.1236
LIU Jianzhong,SHEN Chunming,LEI Yi,et al. Coordinated development mode and evaluation method of coal mine methane and coal in coal mine area in China[J]. Journal of China Coal Society,2017,42(5):1221−1229. doi: 10.13225/j.cnki.jccs.2016.1236
|
[7] |
雷 毅,申宝宏,刘见中. 煤矿区煤层气与煤炭协调开发模式初探[J]. 煤矿开采,2012,17(3):1−4. doi: 10.3969/j.issn.1006-6225.2012.03.001
LEI Yi,SHEN Baohong,LIU Jianzhong. Initial discussion of coal mine methane and coal coordination mining mode[J]. Coal Mining Technology,2012,17(3):1−4. doi: 10.3969/j.issn.1006-6225.2012.03.001
|
[8] |
申宝宏,刘见中,张 泓. 我国煤矿瓦斯治理的技术对策[J]. 煤炭学报,2007,32(7):673−679. doi: 10.3321/j.issn:0253-9993.2007.07.001
SHEN Baohong,LIU Jianzhong,ZHANG Hong. The technical measures of gas control in China coal mines[J]. Journal of China Coal Society,2007,32(7):673−679. doi: 10.3321/j.issn:0253-9993.2007.07.001
|
[9] |
袁 亮,薛俊华,张 农,等. 煤层气抽采和煤与瓦斯共采关键技术现状与展望[J]. 煤炭科学技术,2013,41(9):6−11. doi: 10.13199/j.cnki.cst.2013.09.006
YUAN Liang,XUE Junhua,ZHANG Nong,et al. Development orientation and status of key technology for mine underground coal bed methane drainage as well as coal and gas simultaneous mining[J]. Coal Science and Technology,2013,41(9):6−11. doi: 10.13199/j.cnki.cst.2013.09.006
|
[10] |
申宝宏,刘见中,赵路正. 煤矿区煤层气产业化发展现状与前景[J]. 煤炭科学技术,2011,39(1):6−10. doi: 10.13199/j.cst.2011.01.12.shenbh.007
SHEN Baohong,LIU Jianzhong,ZHAO Luzheng. Present status and outlook of coal bed methane industrial development in coal mine area[J]. Coal Science and Technology,2011,39(1):6−10. doi: 10.13199/j.cst.2011.01.12.shenbh.007
|
[11] |
谢和平,周宏伟,薛东杰,等. 我国煤与瓦斯共采: 理论、技术与工程[J]. 煤炭学报,2014,39(8):1391−1397.
XIE Heping,ZHOU Hongwei,XUE Dongiie,et al. Theory, technology and engineering of simultaneous exploitation of coal and gas in China[J]. Journal of China Coal Society,2014,39(8):1391−1397.
|
[12] |
张遂安. 采煤采气一体化理论与实践[J]. 中国煤层气,2006,3(4):13−16. doi: 10.3969/j.issn.1672-3074.2006.04.004
ZHANG Suian. Theory and practice of integrated coal mining and gas extraction[J]. China coal mine Methane,2006,3(4):13−16. doi: 10.3969/j.issn.1672-3074.2006.04.004
|
[13] |
贾承造. 煤层气资源储量评估方法[M]. 北京: 石油工业出版社, 2007: 1–155.
JIA Chengzao. CBM resource reserve assessment method[M]. Beijing, Petroleum Industry Press, 2007: 1–155.
|
[14] |
张子敏, 吴 吟. 中国煤矿瓦斯地质规律与编图[M]. 徐州: 中国矿业大学出版社, 2014: 1–220.
|
[15] |
张子敏,吴 吟,2013. 中国煤矿瓦斯赋存构造逐级控制规律与分区划分[J]. 地学前缘,2013,20(2):237−245.
ZHANG Zimin,WU Yin. Tectonic-level-control rule and area-dividing of coalmine gas occurrence in China[J]. Earth Science Frontiers,2013,20(2):237−245.
|
[16] |
舒龙勇,樊少武,张 浪,等. 我国煤矿井下规模化抽采煤层气技术模式初探[J]. 煤矿安全,2016,47(12):149−153. doi: 10.13347/j.cnki.mkaq.2016.12.041
SHU Longyong,FAN Shaowu,ZHANG Lang,et al. Technical mode of underground large-scale extracting coal mine methane in coal mines of China[J]. Safety in Coal Mines,2016,47(12):149−153. doi: 10.13347/j.cnki.mkaq.2016.12.041
|
[17] |
季文博. 煤炭与煤层气协调开发问题研究[J]. 煤炭经济研究,2015,35(8):62−65. doi: 10.13202/j.cnki.cer.2015.08.017
JI Wenbo. Comments on problems and target of coal bed methane coordinative development[J]. Coal Economic Research,2015,35(8):62−65. doi: 10.13202/j.cnki.cer.2015.08.017
|
[18] |
李 勇,王延斌,倪小明,等. 煤层气低效井成因判识及治理体系构建研究[J]. 煤炭科学技术,2020,48(2):185−193.
LI Yong,WANG Yanbin,NI Xiaoming,et al. Study on identification and control system construction of low efficiency coalbed methane wells[J]. Coal Science and Technology,2020,48(2):185−193.
|
[19] |
晋香兰. 煤矿区煤与煤层气协调开发模式的探讨—以晋城矿区为例[J]. 中国煤炭地质,2012,24(9):16−19. doi: 10.3969/j.issn.1674-1803.2012.09.04
JIN Xianglan. A discussion on coal and cbm coordinated exploitation mode in coalmine areas- a case study in Jincheng mining area[J]. Coal Geology of China,2012,24(9):16−19. doi: 10.3969/j.issn.1674-1803.2012.09.04
|
[20] |
张新民,郑玉柱. 煤层气与煤炭资源协调开发浅析[J]. 煤田地质与勘探,2009,37(3):19−26. doi: 10.3969/j.issn.1001-1986.2009.03.005
ZHANG Xinmin,ZHENG Yuzhu. Analysis on coordinated development of CBM and coal resources[J]. Coal Geology & Exploration,2009,37(3):19−26. doi: 10.3969/j.issn.1001-1986.2009.03.005
|
[21] |
范喜生,张 浪,汪 东. 煤与煤层气协调开采的含义及关键问题定量分析[J]. 安全与环境学报,2016,16(2):123−127. doi: 10.13637/j.issn.1009-6094.2016.02.025
FAN Xisheng,ZHANC Lang,WANC Dong. Implication of the coordinative mining of coal and coal-bed methane and a quantitative analysis of the key problems involved[J]. Journal of Safety and Environment,2016,16(2):123−127. doi: 10.13637/j.issn.1009-6094.2016.02.025
|
[22] |
蔺景德,方惠军,王建飞,等. 基于生产数据重整的煤层气开发动态分析[J]. 天然气工业,2018,38(S1):80−85.
LIN Jingde,FANG Huijun,WANG Jianfei,et al. Dynamic analysis of coal mine methane development based on production data reconstruction[J]. Natural Gas Industry,2018,38(S1):80−85.
|
[23] |
王 亮. 基于大数据分析的可视化技术[J]. 电子技术,2020,49(9):74−75.
WANG Liang. Study on visualization technology based on big data analysis[J]. Electronic Technology,2020,49(9):74−75.
|
[24] |
王 强. BP神经网络模型在数据分析中的应用[J]. 电子技术与软件工程,2020(12):189−190.
WANG Qiang. Application of BP neural network model in data analysis[J]. Electronic Technology & Software Engineering,2020(12):189−190.
|
[25] |
薛 丹. 基于大数据分析的煤层气井排采参数关系研究[D]. 北京: 中国石油大学(北京), 2019: 1–55.
XUE Dan. Research on the relationship of coal-bed methane well drainage parameters based on big data analysis. [D]. Beijing: China University of Petroleum(Beijing), 2019: 1–55.
|
[26] |
陈 茜. 基于Hadoop的煤矿区煤层气开发利用大数据平台设计[J]. 煤炭经济研究,2018,38(10):71−75.
CHEN Qian. Design of big data platform for coal mine methane development and utilization based on Hadoop[J]. Coal Economic Research,2018,38(10):71−75.
|
[27] |
徐华龙. 典型矿区煤层气与煤炭协调开发动态模拟研究[J]. 工矿自动化,2018,38(10):71−75. doi: 10.13272/j.issn.1671-251x.2019080092
XU Hualong. Research on dynamic simulation of coordinated development of coal mine methane and coal in typical mining areas[J]. Industry and Mine Automation,2018,38(10):71−75. doi: 10.13272/j.issn.1671-251x.2019080092
|
[28] |
李首滨,李 森,张守祥,等. 综采工作面智能感知与智能控制关键技术与应用[J]. 煤炭科学技术,2021,49(4):28−39.
LI Shoubin,LI Sen,ZHANG Shouxiang,et al. Key technology and application of intelligent perception and intelligent control in fully mechanized mining face[J]. Coal Science and Technology,2021,49(4):28−39.
|
[29] |
李泉新,王 鲜,许 超,等. 瓦斯抽采顺煤层超长距定向孔钻进关键技术[J]. 煤炭科学技术,2020,48(12):168−174.
LI Quanxin,WANG Xian,XU Chao,et al. Key technology of drilling with ultra-long-distance directional hole for gas drainage along coal seam[J]. Coal Science and Technology,2020,48(12):168−174.
|
[30] |
李泉新,石智军,史海岐. 煤矿井下定向钻进工艺技术的应用[J]. 煤田地质与勘探,2014,42(2):85−88, 92. doi: 10.3969/j.issn.1001-1986.2014.02.018
LI Quanxin,SHI Zhijun,SHI Haiqi. The Application of directional drilling technology in coal mine[J]. Coal Geology & Exploration,2014,42(2):85−88, 92. doi: 10.3969/j.issn.1001-1986.2014.02.018
|
[31] |
方 俊,石智军,李泉新,等. 新型煤矿井下定向钻进用有线随钻测量装置[J]. 工矿自动化,2015,41(8):1−5. doi: 10.13272/j.issn.1671-251x.2015.08.001
FANG Jun,SHI Zhijun,LI Quanxin,et al. Novel cable measurement while drilling device used for directional drilling in coal mine[J]. Industry and Mine Automation,2015,41(8):1−5. doi: 10.13272/j.issn.1671-251x.2015.08.001
|
[32] |
石智军,李泉新,姚 克. 煤矿井下水平定向钻进技术与装备的新进展[J]. 探矿工程(岩土钻掘工程),2015,42(1):12−16.
SHI Zhijun,LI Quanxin,YAO Ke. Latest developments of horizontal directional drilling technology and the equipments for underground coal mine[J]. Exploration Engineering(Rock & Soil Drilling and Tunneling),2015,42(1):12−16.
|
[33] |
张幼振,张 宁,刘 璞,等. 典型含煤地层锚固孔钻进动力特性与地层信息识别研究[J]. 煤炭科学技术,2021,49(2):177−185.
ZHANG Youzhen,ZHANGNing,LIUPu,et al. Study on drilling dynamic characteristics and stratum information identification of anchor hole intypical coal-bearing stratum[J]. Coal Science and Technology,2021,49(2):177−185.
|
[34] |
杜子健,刘子龙. 煤矿井下顺煤层千米枝状长钻孔抽采瓦斯技术[J]. 矿业安全与环保,2007,34(1):27−30. doi: 10.3969/j.issn.1008-4495.2007.01.011
DU Zijian,LIU Zilong. Gas Drainage from Underground Mine with, 1600m Branched Long Holes along Seam[J]. Mining Safety & Environmental Protection,2007,34(1):27−30. doi: 10.3969/j.issn.1008-4495.2007.01.011
|
[35] |
龚杰立,李国富,李德慧,等. 山西省煤成气勘查开发现状及探索[J]. 煤田地质与勘探,2022,50(2):39−47. doi: 10.12363/issn.1001-1986.21.09.0514
GONG Jieli,LI Guofu,LI Dehui,et al. Present situation and prospects of coal-derived gas exploration and development in Shanxi Province[J]. Coal Geology& Exploration,2022,50(2):39−47. doi: 10.12363/issn.1001-1986.21.09.0514
|
[36] |
山西晋城矿区采气采煤一体化煤层气开发示范工程[R]. 晋城: 山西晋城无烟煤矿业集团有限责任公司, 2011.
|
[37] |
李国富,何 辉,刘 刚,等. 煤矿区煤层气三区联动立体抽采理论与模式[J]. 煤炭科学技术,2012,40(10):7−11. doi: 10.13199/j.cst.2012.10.13.ligf.008
LI Guofu,HE Hui,LIU Gang,JIAO Haibin,LIU Xing,et al. Three region linkage three-dimensional gas drainage theory and mode of coal bed methane in coal mining area[J]. Coal Science and Technology,2012,40(10):7−11. doi: 10.13199/j.cst.2012.10.13.ligf.008
|
[38] |
李国富,李贵红,刘 刚. 晋城矿区典型区煤层气地面抽采效果分析[J]. 煤炭学报,2014,39(9):1932−1937.
LI Guofu,LI Guihong,LIU Gang. Analysis on the ground extraction effect of coal-bed methane at typical area in Jincheng, China[J]. Journal of China Coal Society,2014,39(9):1932−1937.
|
[39] |
袁 亮. 卸压开采抽采瓦斯理论及煤与瓦斯共采技术体系[J]. 煤炭学报,2009,34(1):1−8. doi: 10.3321/j.issn:0253-9993.2009.01.001
YUAN Liang. Theory of pressure-relieved gas extraction and technique system of integrated coal production and gas extraction[J]. Journal of China Coal Society,2009,34(1):1−8. doi: 10.3321/j.issn:0253-9993.2009.01.001
|
[40] |
袁 亮. 瓦斯治理理念和煤与瓦斯共采技术[J]. 中国煤炭,2010,36(6):5−12. doi: 10.3969/j.issn.1006-530X.2010.06.001
YUAN Liang. Concept of gas control and simultaneous extraction of coal and gas[J]. China Coal,2010,36(6):5−12. doi: 10.3969/j.issn.1006-530X.2010.06.001
|
[41] |
吴建国,李 伟. 淮北矿区煤层气抽采利用技术探讨[J]. 中国煤层气,2005,2(5):16−19. doi: 10.3969/j.issn.1672-3074.2005.04.004
WU Jianguo,LI Wei. Discussion on technology for drainage and utilization of CBM in Huibei Mining Area[J]. China coal mine Methane,2005,2(5):16−19. doi: 10.3969/j.issn.1672-3074.2005.04.004
|
[42] |
宋 岩,柳少波,琚宜文,等. 含气量和渗透率耦合作用对高丰度煤层气富集区的控制[J]. 石油学报,2013,34(3):417−426. doi: 10.7623/syxb201303001
SONG Yan,LIU Shaobo,JU Yiwen,et al. Coupling between gas content and permeability controlling enrichment zones of high abundance coal bed methane[J]. Acta Petrolei Sinica,2013,34(3):417−426. doi: 10.7623/syxb201303001
|
[43] |
胡千庭,孙海涛. 煤矿采动区地面井逐级优化设计方法[J]. 煤炭学报,2014,39(9):1907−1913. doi: 10.13225/j.cnki.jccs.2014.8014
HU Qianting,SUN Haitao. Graded optimization design method on surface gas drainage borehole[J]. Journal of China Coal Society,2014,39(9):1907−1913. doi: 10.13225/j.cnki.jccs.2014.8014
|
[44] |
滑俊杰,张跃兵,王向军. 顺层定向长钻孔预抽区段煤层瓦斯防突技术研究与应用[J]. 煤,2014,23(7):18−20. doi: 10.3969/j.issn.1005-2798.2014.07.007
HUA Junjie,ZHANG Yuebing,WANG Xiangjun. Coal seam gas outburst prevention technology research and application of bedding directional drilling drainage long section[J]. Coal,2014,23(7):18−20. doi: 10.3969/j.issn.1005-2798.2014.07.007
|
[45] |
张培河,张明山. 煤层气不同开发方式的应用现状及适应条件分析[J]. 煤田地质与勘探,2010,38(2):10−12.
ZHANG Peihe,ZHANG Mingshan. Analysis of application status and adapting conditions for different methods of CBM development[J]. Coal Geology & Exploration,2010,38(2):10−12.
|
[46] |
张 群,冯三利,杨锡禄. 试论我国煤层气的基本储层特点及开发策略[J]. 煤炭学报,2001,26(3):30−35. doi: 10.13225/j.cnki.jccs.2001.03.002
ZHANG Qun,FENG Sanli,YANG Xilu. Basic reservoir characteristics and development strategy of coal mine methane resource in China[J]. Journal of China Coal Society,2001,26(3):30−35. doi: 10.13225/j.cnki.jccs.2001.03.002
|
[47] |
李树刚,林海飞,赵鹏翔,等. 采动裂隙椭抛带动态演化及煤与甲烷共采[J]. 煤炭学报,2014,39(8):1455−1462. doi: 10.13225/j.cnki.jccs.2014.9013
LI Shugang,LIN Haifei,ZHAO Pengxiang,et al. Dynamic evolution of mining fissure elliptic paraboloid zone and extraction coal and gas[J]. Journal of China Coal Society,2014,39(8):1455−1462. doi: 10.13225/j.cnki.jccs.2014.9013
|
[48] |
杨 科,谢广祥. 采动裂隙分布及其演化特征的采厚效应[J]. 煤炭学报,2008,33(10):1092−1096. doi: 10.13225/j.cnki.jccs.2008.10.007
YANG Ke,XIE Guangxiang. Caving thickness effects on distribution and evolution characteristicsofm ning induced fracture[J]. Journal of China Coal Society,2008,33(10):1092−1096. doi: 10.13225/j.cnki.jccs.2008.10.007
|
[49] |
孟召平. 煤层气开发地质学理论与方法[M]. 北京: 科学出版社, 2010: 1–50.
MENG Zhaoping. Geological theory and method of coalbed methane development. [M]. Beijing: Science Press, 2010: 1–50.
|
[50] |
文光才,孙海涛,李日富,等. 煤矿采动稳定区煤层气资源评估方法及其应用[J]. 煤炭学报,2018,43(1):160−167.
WEN Guangcai,SUN Haitao,LI Rifu,et al. Assessment method and application of coal mine methane resources in coal mining stability area[J]. Journal of China Coal Society,2018,43(1):160−167.
|
[51] |
李日富. 采动影响稳定区煤层气储层及资源量评估技术的研究与应用[D]. 重庆: 重庆大学, 2014: 1–66.
LI Rifu. Study and application of CBM reservoir and resource assessment technology in stable areas affected by mining[D]. Chongqing: Chongqing University, 2014: 1–66.
|
[52] |
孙东玲,曹 偈,苗法田, 等. 突出煤–瓦斯在巷道内的运移规律[J]. 煤炭学报,2018,43(10):2773−2779.
SUN Dongling,CAO Jie,MIAO Fatian,et al. Migration law of outburst coal and gas in roadway[J]. Journal of China Coal Society,2018,43(10):2773−2779.
|
[53] |
李泉新, 许 超, 刘建林, 等. 煤矿井下全域化瓦斯抽采定向钻进关键技术与工程实践[J/OL]. 煤炭学报:1–9[2022–06–16]. DOI:10,13225/j.cnki. jccs,2021,1412.
LI Quanxin, XU Chao, LIU Jianlin, et al. Key technology and practice of directional drilling for gas drainage in different formations and mining times underground in coal mine[J]. Journal of China Coal Society, 1–9[2022–06–16]. DOI:10,13225/j.cnki. jccs,2021,1412.
|
[54] |
李泉新,刘 飞,方 俊,等. 我国煤矿井下智能化钻探技术装备发展与展望[J]. 煤田地质与勘探,2021,49(6):265−272.
LI Quanxin,LIU Fei,FANG Jun,et al. Development and prospect of intelligent drilling technology and equipment for underground coal mines in China[J]. Coal Geology & Exploration,2021,49(6):265−272.
|
[55] |
李全贵, 翟 成, 林柏泉, 等. 定向水力压裂技术研究与应用[J]. 西安科技大学学报, 2011, 31(6): 735–739.
LI Quangui, ZHAI Cheng, LIN Baiquan, et al. Research and application of directional hydraulic fracturing technology[J]Journal of Xi’an University of Science and Technology, 2011, 31(6): 735–739.
|
[56] |
俞海玲. 高压气体预裂爆轰作用致裂煤岩机理及应用研究[D]. 青岛: 山东科技大学, 2019: 1–10.
YU Hailing. Study on the mechanism and application of high pressure gas precracking and detonation to crack coal and rock. [D]. Qingdao: Shandong University of Science and Technology, 2019: 1–10.
|
[57] |
高鑫浩,王明玉. 水力压裂-深孔预裂爆破复合增透技术研究[J]. 煤炭科学技术,2020,48(7):318−324.
GAO Xinhao,WANG Mingyu. Study on hydraulic fracturing-deep hole pre-splitting blasting composite permeability enhancement technology[J]. Coal Science and Technology,2020,48(7):318−324.
|
[58] |
康向涛. 煤层水力压裂裂缝扩展规律及瓦斯抽采钻孔优化研究[D]. 重庆: 重庆大学, 2014: 1–53.
KANG Xiangtao. Study on fracture propagation law and gas extraction drilling optimization in hydraulic fracturing of coal seam. [D]. Chongqing: Chongqing University, 2014: 1–53.
|
[59] |
倪小明,王延斌,接铭训,等. 不同构造部位地应力对压裂裂缝形态的控制[J]. 煤炭学报,2008,33(5):505−508. doi: 10.3321/j.issn:0253-9993.2008.05.007
NI Xiaoming,WANG Yanbin,JIE M ingxun,et al. Stress’s influence on different tectonic positions on fracturing interstitial morphology[J]. Journal of China Coal Society,2008,33(5):505−508. doi: 10.3321/j.issn:0253-9993.2008.05.007
|
[60] |
国家能源局石油天然气司, 国务院发展研究中心资源与环境政策研究所, 自然资源部油气资源战略研究中心. 中国天然气发展报告[M]. 北京: 石油工业出版社, 2021.
|
[61] |
徐凤银,闫 霞,林振盘,等. 我国煤层气高效开发关键技术研究进展与发展方向[J]. 煤田地质与勘探,2022,50(3):1−14. doi: 10.12363/issn.1001-1986.21.12.0736
XU Fengyin,YAN Xia,LIN Zhenpan,et al. Research progress and development direction of key technologies for efficient coal mine methane development in China[J]. Coal Geology & Exploration,2022,50(3):1−14. doi: 10.12363/issn.1001-1986.21.12.0736
|
[62] |
秦 勇. 煤系气聚集系统与开发地质研究战略思考[J]. 煤炭学报,2021,46(8):2387−2399.
QIN Yong. Strategic thinking on research of coal measure gas accumulation system and development geology[J]. Journal of China Coal Society,2021,46(8):2387−2399.
|
[63] |
秦 勇,申 建,史 锐. 中国煤系气大产业建设战略价值与战略选择[J]. 煤炭学报,2022,47(1):371−387.
QIN Yong,SHEN Jian,SHI Rui. Strategic value and choice on construction of large CMG industry in China[J]. Journal of China Coal Society,2022,47(1):371−387.
|
[64] |
贺天才,王保玉,田永东. 晋城矿区煤与煤层气共采研究进展及急需研究的基本问题[J]. 煤炭学报,2014,39(9):1779−1785. doi: 10.13225/j.cnki.jccs.2014.8022
HE Tiancai,WANG Baoyu,TIAN Yongdong. Development and issues with coal and coal-bed methane simultaneous exploitation in Jincheng mining area[J]. Journal of China Coal Society,2014,39(9):1779−1785. doi: 10.13225/j.cnki.jccs.2014.8022
|
1. |
王双明,孙强,耿济世,袁士豪,贾海梁,王生全,张卫强,胡建军,李得路. 煤炭开采地球关键带响应及减损开采技术体系. 中国地质. 2025(01): 1-21 .
![]() | |
2. |
王皓,王强民,董书宁,王晓东,葛光荣,张溪彧,曹书苗,张全. 西部典型煤矿区采动水文生态效应及修复途径. 煤炭学报. 2025(01): 610-622 .
![]() | |
3. |
王家臣,刘云熹,李杨,王蕾. 矿业系统工程60年发展与展望. 煤炭学报. 2024(01): 261-279 .
![]() | |
4. |
杜华栋,谢姗姗,毕银丽,刘研,孙浩,刘云龙. 半干旱矿区采动地裂缝发育对幼苗库及其建植因子影响. 煤炭科学技术. 2024(02): 350-362 .
![]() | |
5. |
吴晗. 深部煤层开采宽度对煤柱稳定性的影响研究. 煤炭科技. 2024(03): 105-108 .
![]() | |
6. |
王双明,孙强,耿济世,袁士豪,谷超,杨多兴,牛超,路拓,郭晨,张唤兰,黄海鱼,师庆民. 西部矿区采动损害及减损开采的地质保障技术框架体系. 煤田地质与勘探. 2024(09): 1-13 .
![]() | |
7. |
李磊,屈晓明,贾乾明,郑长金,易双成. 基于GMS的陈家河煤矿地下水数值模拟研究. 矿产勘查. 2024(S2): 179-186 .
![]() | |
8. |
谢晓深,侯恩科,冯栋,从通,侯鹏飞,陈秋计,王建文,李民峰,谢永利. 榆神府矿区采煤地表裂缝发育规律及特征. 工程科学学报. 2023(01): 44-53 .
![]() | |
9. |
王双明,耿济世,李鹏飞,孙强,范章群,李丹. 煤炭绿色开发地质保障体系的构建. 煤田地质与勘探. 2023(01): 33-43 .
![]() | |
10. |
刘伟,尹勤瑞,刘祥宏. 煤矿区生态自然修复及其人工促进模式探讨. 煤田地质与勘探. 2023(04): 110-124 .
![]() | |
11. |
陈芳,李杰卫,张琰君,朱贵祯,朱元昊,朱宏,朱文鑫. 黄土沟壑区特厚煤层开采地裂缝发育规律研究. 金属矿山. 2023(04): 229-235 .
![]() | |
12. |
石钰,阳梦,李树刚,薛俊华,赵鹏翔,马玉华. 纳米颗粒复合表面活性剂对煤中CH_4吸附/解吸和扩散的影响. 煤炭学报. 2023(08): 3116-3127 .
![]() | |
13. |
雷雯,赵坤. 探讨煤炭开采对生态环境的影响及治理策略. 内蒙古煤炭经济. 2023(14): 58-60 .
![]() | |
14. |
谢晓深,侯恩科,王双明,赵兵朝,龙天文,冯栋,侯鹏飞,张琦. 黄河中游榆神府矿区采动含水层失水模式及保护技术. 煤炭科学技术. 2023(12): 197-207 .
![]() | |
15. |
李树志,李学良,尹大伟. 碳中和背景下煤炭矿山生态修复的几个基本问题. 煤炭科学技术. 2022(01): 286-292 .
![]() | |
16. |
肖义,尚利康,郭婷婷. 基于GMS的煤层开采对地下水影响的数值模拟研究. 煤炭技术. 2022(03): 135-139 .
![]() | |
17. |
王昕,郭英,师童,王旭,魏高明,张超. 深部边远采区综放工作面俯斜开采煤自燃防控方法. 煤矿安全. 2022(05): 81-86 .
![]() | |
18. |
桑树勋,袁亮,刘世奇,韩思杰,郑司建,刘统,周效志,王冉. 碳中和地质技术及其煤炭低碳化应用前瞻. 煤炭学报. 2022(04): 1430-1451 .
![]() | |
19. |
高银贵,周大伟,安士凯,王玲,张德民,詹绍奇. 煤矿开采地表沉陷UAV-摄影测量监测技术研究. 煤炭科学技术. 2022(05): 57-65 .
![]() | |
20. |
孙涛,宋世杰,常青,王晨晨,张艳杰,彭芮思,王艺. 煤矸石堆积区土壤重金属形态组成与生物有效性的空间变化特征——以峰峰矿区为例. 煤田地质与勘探. 2022(10): 85-95 .
![]() | |
21. |
侯恩科,谢晓深,冯栋,陈秋计,车晓阳,侯鹏飞. 浅埋煤层开采地面塌陷裂缝规律及防治方法. 煤田地质与勘探. 2022(12): 30-40 .
![]() | |
22. |
刘超,夏冰冰,白坤,张慧峰,樊江伟,马越,刘鹏,侯恩科. 基于微震监测的中深埋煤层导水裂缝带发育规律研究. 中国煤炭. 2022(12): 60-67 .
![]() | |
23. |
侯恩科,谢晓深,王双明,龙天文,石增武,杨征,黄永安,谢永利,陈真,白坤,马越,郭亮亮,王岗. 中深埋厚煤层开采地下水位动态变化规律及形成机制. 煤炭学报. 2021(05): 1404-1416 .
![]() | |
24. |
马雄德,祁浩,郭亮亮,迟宝锁,王宏科,朱占荣,曹虎生. 榆神矿区地下水埋深上限阈值. 煤炭学报. 2021(07): 2370-2378 .
![]() | |
25. |
林倚天,苏士杰,赵明,赵辉. 煤矸石-粉煤灰充填料浆流变特性的实验研究. 中国煤炭地质. 2021(09): 13-17+41 .
![]() | |
26. |
杜华栋,宁本燕,拜梦童,范鹏辉. 1990—2019年榆神府矿区不同地貌植被覆盖度变化及驱动力探究. 林业资源管理. 2021(05): 121-130 .
![]() |