HAN Lei,YANG Ke,WANG Tianjun,et al. “Four Zones” control model and application for surface subsidence of bed separation grouting mining[J]. Coal Science and Technology,2023,51(8):23−35
. DOI: 10.13199/j.cnki.cst.2023-0561Citation: |
HAN Lei,YANG Ke,WANG Tianjun,et al. “Four Zones” control model and application for surface subsidence of bed separation grouting mining[J]. Coal Science and Technology,2023,51(8):23−35 . DOI: 10.13199/j.cnki.cst.2023-0561 |
The grouting technology of bed separations has been proved to be a new method which can meet the requirements of non-destructive mining and solid waste reduction. To effectively control the subsidence of ground structures caused by mining, the whole process of bed separation grouting mining is analyzed in a steady state based on the key stratum theory. For the first time, a “four zones” control model for surface subsidence under grouting bed separation was proposed, which includes natural zone, transition zone, warning zone, and protection zone, and the calculation formula for the "four zones" range was derived. Based on the engineering back-ground of controlling the subsidence of the ground coking plant at the 3501 panel, the proposed “four zones” model was validated by combining physical modelling and field measurement of subsidence. The results show that the surface subsidence curve of bed separation grouting in physical modelling shows an irregular “V” shape, and the surface subsidence of the panel first increases rapidly. After reaching the maximum subsidence, the surface subsidence first decreases rapidly, and then the reduction rate gradually slows down. The subsidence curve shows a clear “four zones” distribution, with a maximum subsidence of 1589 mm, appearing at the contact boundary between the natural zone and the transition zone. The subsidence of the contact boundary between the transition zone and the warning zone is 497.94 mm, and there is basically no subsidence within the protection zone. The predicted surface subsidence, horizontal deformation, slope, and curvature caused by mining under grouting conditions based on probability integral method are consistent with the field measured results, but significantly smaller than the predicted values under non-grouting conditions. It is determined that the surface deformation under grouting conditions meets the requirements of Grade I damage level for structures. Based on the practical engineering geology and observed data of the mine, the natural area is 261.19 m, the transition area is 246.09 m, the warning area is 655.25 m, and the protection area is 199.53 m. The proposed “four zones” control model provides a fundamental theoretical basis for studying the subsidence of bed separation grouting mining.
[1] |
刘 峰, 郭林峰, 赵路正. 双碳背景下煤炭安全区间与绿色低碳技术路径[J]. 煤炭学报, 2022, 47(1): 1−15.
LIU Feng, GUO Linfeng, ZHAO Luzheng. Research on coal safety range and green low-carbon technology path under the dual-carbon background[J]. Journal of China Coal Society, 222, 47(1): 1−15.
|
[2] |
谢和平,任世华,谢亚辰,等. 碳中和目标下煤炭行业发展机遇[J]. 煤炭学报,2021,46(7):2197−2211.
XIE Heping,REN Shihua,XIE Yachen,et al. Development opportunities of coal industry towards the goaf of carbon neutrality[J]. Journal of China Coal Society,2021,46(7):2197−2211.
|
[3] |
王双明,孙 强,乔军伟,等. 论煤炭绿色开采的地质保障[J]. 煤炭学报,2020,45(1):8−15.
WANG Shuangming,SUN Qiang,QIAO Junwei,et al. Geological guarantee of coal green mining[J]. Journal of China Coal Society,2020,45(1):8−15.
|
[4] |
钱鸣高,许家林,王家臣. 再论煤炭的科学开采[J]. 煤炭学报,2018,43(1):1−13.
QIAN Minggao,XU Jialin,WANG Jiachen. Further on the sustainable mining of coal[J]. Journal of China Coal Society,2018,43(1):1−13.
|
[5] |
崔希民,车宇航,MALINOWSKA A,等. 采动地表沉陷全过程预计方法与存在问题分析[J]. 煤炭学报,2022,47(6):2170−2181.
CUI Ximin,CHE Yuhang,MALINOWSKA A,et al. Method and problems for subsidence prediction in entire process induced by underground mining[J]. Journal of China Coal Society,2022,47(6):2170−2181.
|
[6] |
杨 科,赵新元,何 祥,等. 多源煤基固废绿色充填基础理论与技术体系[J]. 煤炭学报,2022,47(12):4201−4216.
YANG Ke,ZHAO Xinyuan,HE Xiang,et al. Basic theory and key technology of multi-source coal-based solid waste for green backfilling[J]. Journal of China Coal Society,2022,47(12):4201−4216.
|
[7] |
张吉雄,张 强,周 楠,等. 煤基固废充填开采技术研究进展与展望[J]. 煤炭学报,2022,47(12):4167−4181.
ZHANG Jixiong,ZHANG Qiang,ZHOU Nan,et al. Research progress and propect of coal based solid waste backfilling mining technology[J]. Journal of China Coal Society,2022,47(12):4167−4181.
|
[8] |
袁 亮. 煤炭精准开采科学构想[J]. 煤炭学报,2017,42(1):1−7.
YUAN Liang. Scientific conception of precision coal mining[J]. Journal of China Coal Society,2017,42(1):1−7.
|
[9] |
杨 科,魏 祯,赵新元,等. 黄河流域煤电基地固废井下绿色充填开采理论与技术[J]. 煤炭学报,2021,46(S2):925−935.
YANG Ke,WEI Zhen,ZHAO Xinyuan,et al. Theory and technology of green filling of solid waste in underground mine at coal power base of Yellow River basin[J]. Journal of China Coal Society,2021,46(S2):925−935.
|
[10] |
杨 伦. 对采动覆岩离层注浆减沉技术的再认识[J]. 煤炭学报,2002,27(4):352−356.
YANG Lun. Re-understanding of grouting technology for subsidence reduction in mining-induced overlying strata[J]. Journal of China Coal Society,2002,27(4):352−356.
|
[11] |
张 鑫,乔 伟,雷利剑,等. 综放开采覆岩离层形成机理[J]. 煤炭学报,2016,41(S2):342−349.
ZHANG Xin,QIAO Wei,LEI Lijian,et al. Formation mechanism of overburden bed separation in fully mechanized top-coal caving[J]. Journal of China Coal Society,2016,41(S2):342−349.
|
[12] |
朱卫兵,许家林,赖文奇,等. 覆岩离层分区隔离注浆充填减沉技术的理论研究[J]. 煤炭学报,2007,32(5):458−462.
ZHU Weibing,XU Jialin,LAI Wenqi,et al. Research of isolated section-grouting technology for overburden bed separation space to reduce subsidence[J]. Journal of China Coal Society,2007,32(5):458−462.
|
[13] |
轩大洋,许家林,王秉龙. 覆岩隔离注浆充填绿色开采技术[J]. 煤炭学报,2022,47(12):4265−4277.
XUAN Dayang,XU Jialin,WANG Binglong. Green mining technology of overburden isolated grout injection[J]. Journal of China Coal Society,2022,47(12):4265−4277.
|
[14] |
WANG B,XU J,XUAN D. Time function model of dynamic surface subsidence assessment of grout-injected overburden of a coal mine[J]. International Journal of Rock Mechanics and Mining Sciences,2018,104:1−8. doi: 10.1016/j.ijrmms.2018.01.044
|
[15] |
XUAN D,XU J. Longwall surface subsidence control by technology of isolated overburden grout injection[J]. International Journal of Mining Science and Technology,2017,27(5):813−818. doi: 10.1016/j.ijmst.2017.07.014
|
[16] |
马荷雯. 采动覆岩离层多层位注浆地表沉陷控制技术[J]. 煤田地质与勘探,2021,49(3):150−157.
MA Hewen. Surface subsidence control technology of multi-bed separation grouting[J]. Coal Geology and Exploration,2021,49(3):150−157.
|
[17] |
MA H,SUI W,NI J. Environmentally sustainable mining: a case study on surface subsidence control of grouting into overburden[J]. Environmental Earth Sciences,2019,78:320. doi: 10.1007/s12665-019-8313-1
|
[18] |
刘玉成,戴华阳. 近水平煤层开采沉陷预计的双曲线剖面函数法[J]. 中国矿业大学学报,2019,48(3):676−681.
LIU Yucheng,DAI Huayang. Hyperbolic function model for predicting the main section surface deformation curve due to approximate horizontal coal seam underground longwall mining[J]. Journal of China University of Mining and technology,2019,48(3):676−681.
|
[19] |
杨治林. 煤层地下开采地表沉陷预测的边值方法[J]. 岩土力学,2010,31(S1):232−236.
YANG Zhilin. Prediction of surface subsidence in underground mining seam based on the boundary value method[J]. Rock and Soil Mechanics,2010,31(S1):232−236.
|
[20] |
崔希民, 高 宇, 李培现, 等. 采动覆岩与地表下沉关系模型及离层量估算方法[J]. 煤炭学报, 2023, 48(1): 74−82.
CUI Ximin, GAO Yu, LI Peixian, et al. Relationships of mining subsidence between overburden rock and surface and application to estimate bed separation[J]. Journal of China Coal Society, 2023, 48(1): 74−82.
|
[21] |
郭文兵,赵高博,白二虎. 煤矿高强度长壁开采覆岩破坏充分采动及其判据[J]. 煤炭学报,2020,45(11):3657−3666.
GUO Wenbing,ZHAO Gaobo,BAI Erhu. Critical failure of overlying rock strata and its criteria induced by high-intensity longwall mining[J]. Journal of China Coal Society,2020,45(11):3657−3666.
|
[22] |
朱庆伟,李 航,杨小虎,等. 采动覆岩结构演化特征及对地表沉陷的影响分析[J]. 煤炭学报,2019,44(S1):9−17.
ZHU Qingwei,LI Hang,YANG Xiaohu,et al. Influence analysis of between subsidence and structure evolution in overburden rock under mining[J]. Journal of China Coal Society,2019,44(S1):9−17.
|
[23] |
袁长丰,袁子晋,刘世波,等. 考虑节理几何特征的地表沉陷预计方法[J]. 采矿与安全工程学报,2014,31(4):620−623, 630.
YUAN Changfeng,YUAN Zijin,LIU Shibo,et al. The prediction method for surface subsidence considering the geometrical characteristics of joints[J]. Journal of Mining and Safety Engineering,2014,31(4):620−623, 630.
|
[24] |
高 超,徐乃忠,刘 贵. 特厚煤层综放开采地表沉陷预计模型算法改进[J]. 煤炭学报,2018,43(4):939−944.
GAO Chao,XU Naizhong,LIU Gui. Improvement on prediction model algorithm for surface subsidence of extra thick seam using fully-mechanized top coal caving method[J]. Journal of China Coal Society,2018,43(4):939−944.
|
[25] |
王军保,刘新荣,刘小军. 开采沉陷动态预测模型[J]. 煤炭学报,2015,40(3):516−521.
WANG Junbao,LIU Xinrong,LIU Xiaojun. Dynamic prediction model for mining subsidence[J]. Journal of China Coal Society,2015,40(3):516−521.
|
[26] |
郭庆彪,郭广礼,吕 鑫,等. 基于连续-离散介质耦合的密实充填开采地表沉陷预测模型[J]. 中南大学学报(自然科学版),2017,48(9):2491−2497.
GUO Qingbiao,GUO Guangli,LYU Xin,et al. Research on surface subsidence prediction of dense solid backfilling mining based on the coupling of continuous and discrete medium[J]. Journal of Central South University (Science and Technology),2017,48(9):2491−2497.
|
[27] |
王 磊,张鲜妮,郭广礼,等. 固体密实充填开采地表沉陷预计模型研究[J]. 岩土力学,2014,35(7):1973−1978.
WANG Lei,ZHANG Xianni,GUO Guangli,et al. Research on surface subsidence prediction model of coal mining with solid compacted backfilling[J]. Rock and Soil Mechanics,2014,35(7):1973−1978.
|
[28] |
缪协兴,黄艳利,巨 峰,等. 密实充填采煤的岩层移动理论研究[J]. 中国矿业大学学报,2012,41(6):863−867.
MIAO Xiexing,HUANG Yanli,JU Feng,et al. Strata movement theory of dense backfill mining[J]. Journal of China University and Mining Science,2012,41(6):863−867.
|
[29] |
XUAN D,XU J. Grout injection into bed separation to control surface subsidence during longwall mining under villages: case study of Liudian coal mine, China[J]. Nat Hazards,2014,73:883−906. doi: 10.1007/s11069-014-1113-8
|
[30] |
于 涛,王来贵. 覆岩离层产生机理[J]. 辽宁工程技术大学学报,2006(S2):132−134.
YU Tao,WANG Laigui. Mechanism of generation of overburden separate layer[J]. Journal of Liaoning Technical University,2006(S2):132−134.
|
[31] |
国家安全监管总局. 建筑物、水体、铁路及主要井巷煤柱留设与压煤开采规范[M]. 北京: 煤炭工业出版社, 2017.
|