Advance Search

DONG Shuning,LI Zhi,ZHENG Shitian,et al. Advanced drilling detection and multi-information identification of water-conducting channel of coal floor[J]. Coal Science and Technology,2023,51(7):15−23

. DOI: 10.13199/j.cnki.cst.2023-0493
Citation:

DONG Shuning,LI Zhi,ZHENG Shitian,et al. Advanced drilling detection and multi-information identification of water-conducting channel of coal floor[J]. Coal Science and Technology,2023,51(7):15−23

. DOI: 10.13199/j.cnki.cst.2023-0493

Advanced drilling detection and multi-information identification of water-conducting channel of coal floor

Funds: 

National Key Researchand Development Program of China(2017YFC0804102)

More Information
  • Received Date: April 05, 2023
  • Available Online: June 27, 2023
  • The coal floor develops various water-conducting channels, which seriously threaten the safe production of mines. In order to establish a more scientific multi-information identification technology system for the water-conducting channels in the coal floor, and prevent floor water inrush. Firstly, the principles of reasonable trajectory, reasonable target layer and exploration area maximization are proposed based on the characteristics of the water-conducting channels and the advantages of the ground directional drilling area exploration technology. Diversified types, unclear locations, and significant water inrush hazards are the characteristics of water-conducting channels. Secondly, the summary analysis is conducted on the exploration process of water diversion channels in areas such as HuaiBei Mining Area, Huainan Mining Area, Xingtai Mining Area, and Huanghebei Coal Field. When revealing the water-conducting channels, there are significant differences in visual indicators such as rock debris, drilling time, drilling fluid leakage, and confirmatory indicators such as permeability and grouting parameters compared to revealing normal formations. Therefore, the identification indicators of multi-information during the drilling process are divided into two types: qualitative and quantitative. Based on the variation amplitude of two qualitative indicators, rock debris and drilling time, when encountering water-conducting channels, it gives corresponding standard curves, and determines the classification system for water-conducting channel types. Subsequently, a comprehensive analysis is conducted on the changes in the two quantitative indicators of drilling fluid leakage and permeability when encountering water-conducting channels. 30 m3/h of drilling fluid leakage and 10 Lu of permeability are proposed as the classification criteria for conductivity. Based on this, a dual factor comprehensive classification system for water-conducting channels conductivity is established, and the conductivity is divided into four levels. Finally, taking a typical mine in the North China coalfield as a case study, the principle of exploration is adopted to explore the water-conducting channels. The multi-information identification technology is applied to successfully identify four faults, two karst fracture zones and a collapse in the detection area, and determines conductivity levels of water-conducting channels. The research results have guiding effect and important significance for improving the identification and control of water-conducting channels.

  • [1]
    何满潮. 深部建井力学研究进展[J]. 煤炭学报,2021,46(3):726−746.

    HE Manchao. Research progress of deep shaft construction mechanics[J]. Journal of China Coal Society,2021,46(3):726−746.
    [2]
    秦 波. 基于ABAQUS的深部巷道围岩变形破坏规律及应用研究[D]. 青岛: 青岛理工大学, 2013: 1-2.

    QIN Bo. Deformation and failure regularity of deep roadway and application research based on ABAQUS [D]. Qingdao: Qingdao Technological University, 2013: 1-2.
    [3]
    LIN Gang,DONG Donglin,LI Xiang,et al. Accounting for mine water in coal mining activities and its spatial characteristics in China[J]. Mine Water and the Environment,2020,39:150−156.
    [4]
    曾一凡,刘晓秀,武 强,等. 双碳背景下“煤−水−热”正效协同共采理论与技术构想[J]. 煤炭学报,2023,48(2):538−550.

    ZENG Yifan,LIU Xiaoxiu,WU Qiang,et al. Theory and tech-nical conception of coal-water-thermal positive synergistic co-extraction under the dual carbon background[J]. Journal of China coal society,2023,48(2):538−550.
    [5]
    靳德武. 我国煤层底板突水问题的研究现状及展望[J]. 煤炭科学技术, 2002, 30(6): 1-4.

    JIN Dewu. Research status and outlook of water outburst from seam floor in China coal mines. [J]. Coal Science and Technology, 2002, 30(6): 1-4.
    [6]
    袁 亮. 我国煤炭资源高效回收及节能战略研究[J]. 中国矿业大学学报(社会科学版),2018,20(1):3−12.

    YUAN Liang. Strategies of high efficiency recovery and energy saving for coal resources in China[J]. Journal of China University of Mining & Technology(Social Sciences),2018,20(1):3−12.
    [7]
    李永军,彭苏萍. 华北煤田岩溶陷落柱分类及其特征[J]. 煤田地质与勘探,2006,34(4):53−57.

    LI Yongjun,PENG Suping. Classifications and characteristics of Karst collapse columns in North China coalfields[J]. Coal Geology Exploration,2006,34(4):53−57.
    [8]
    郑士田. 两淮煤田煤层底板灰岩水害区域超前探查治理技术[J]. 煤田地质与勘探,2018,46(4):142−146,153.

    ZHENG Shitian. Advanced exploration and control technology of limestone water hazard in cola seam floor in Huainan and Huaibei coalfields[J]. Coal Geology & Exploration,2018,46(4):142−146,153.
    [9]
    陈忠辉,胡正平,李 辉,等. 煤矿隐伏断层突水的断裂力学模型及力学判据[J]. 中国矿业大学学报,2011,40(5):673−677.

    CHEN Zhonghui,HU Zhengping,LI Hui,et al. Fracture mechanical model and criteria of insidious fault water inrush in coal mines[J]. Journal of China University of Mining & Technology,2011,40(5):673−677.
    [10]
    何满潮,谢和平,彭苏萍,等. 深部开采岩体力学研究[J]. 岩石力学与工程学报,2005,24(16):2803−2813. doi: 10.3321/j.issn:1000-6915.2005.16.001

    HE Manchao,XIE Heping,PENG Suping,et al. Study on rock mechanics in deep mining engineering[J]. Chinese Journal of Rock Mechanics and Engineering,2005,24(16):2803−2813. doi: 10.3321/j.issn:1000-6915.2005.16.001
    [11]
    尹尚先,连会青,刘德民,等. 华北型煤田岩溶陷落柱研究70年: 成因·机理·防治[J]. 煤炭科学技术,2019,47(11):1−29.

    YIN Shangxian,LIAN Huiqing,LIU Deming,et al. 70 years of investigation on Karst collapse column in North China Coalfield: cause of origin, mechanism and prevention[J]. Coal Science and Technology,2019,47(11):1−29.
    [12]
    武 强, 郭小铭, 边 凯, 等. 开展水害致灾因素普查防范煤矿水害事故发生[J]. 中国煤炭, 2023, 49(1): 3-15.

    WU Qiang, GUO Xiaoming, BIAN Kai, et al. Carrying out general survey of the water disastercausing factors to prevent the occurrence of coal mine water disasters. [J]. China Coal, 2023, 49(1): 3-15.
    [13]
    张党育,蒋勤明,高春芳,等. 华北型煤田底板岩溶水害区域治理关键技术研究进展[J]. 煤炭科学技术,2020,48(6):31−36.

    ZHANG Dangyu,JIANG Qinming,GAO Chunfang,et al. Study progress on key technologies for regional treatment of Karst water dam-age control in the floor of North China Coalfield[J]. Coal Science and Technology,2020,48(6):31−36.
    [14]
    张玉军,张志巍,肖 杰,等. 承压水体上煤层底板下位隐伏断层采动突水机制研究[J]. 煤炭科学技术,2023,51(2):283−291.

    ZHANG Yujun,ZHANG Zhiwei,XIAO Jie,et al. Study on mining water inrush mechanism of buried fault under coal seam floor above confined water body[J]. Coal Science and Technology,2023,51(2):283−291.
    [15]
    王克勤. 隐伏陷落柱突水的快速治理技术研究[J]. 能源与节能,2020(6):126−127,166.

    WANG Keqin. Research on the rapid treatment technology of water inrush from hidden collapse column[J]. Energy and Energy Cons-ervation,2020(6):126−127,166.
    [16]
    ZHANG Tianjun,PANG Mingkun,JI Xiang,et al. Dynamic response of a non-darcian seepage system in the Broken Coal of a Karst Collapse Pillar[J]. Mine Water and the Environment,2021,40:713−721. doi: 10.1007/s10230-021-00760-8
    [17]
    XU Zhimin,SUN Yajun,GAO Shang,et al. Comprehensive exploration, safety evaluation and grouting of karst collapse columns in the Yangjian coalmine of the Shanxi province, China[J]. Carbonates and Evaporites,2021,36(1):1−12.
    [18]
    董书宁,郭小铭,刘其声,等. 华北型煤田底板灰岩含水层超前区域治理模式与选择准则[J]. 煤田地质与勘探,2020,48(4):1−10. doi: 10.3969/j.issn.1001-1986.2020.04.001

    DONG Shuning,GUO Xiaoming LIU Qisheng,et al. Model and selection criterion of zonal preact grouting to prevent mine water disasters of coal floor limestone aquifer in North China type coalfield[J]. Coal Geology & Exploration,2020,48(4):1−10. doi: 10.3969/j.issn.1001-1986.2020.04.001
    [19]
    赵庆彪. 奥灰岩溶水害区域超前治理技术研究及应用[J]. 煤炭学报,2014,39(6):1112−1117.

    ZHAO Qingbiao. Ordovician limestone karst water disaster regional advanced governance technology study and application[J]. Journal of China Coal Society,2014,39(6):1112−1117.
    [20]
    赵家巍,周宏伟,薛东杰,等. 深部承压水上含隐伏构造煤层底板渗流路径扩展规律[J]. 煤炭学报,2019,44(6):1836−1845.

    ZHAO Jiawei,ZHOU Hongwei,XUE Dongjie,et al. Expansion law of seepage path in the concealed structural floor of coal seam in deep confined water[J]. Journal of China Coal Society,2019,44(6):1836−1845.
    [21]
    董书宁,刘其声,王 皓,等. 煤层底板水害超前区域治理理论框架与关键技术[J]. 煤田地质与勘探,2023,51(1):185−195.

    DONG Shuning,LIU Qisheng,WANG Hao,et al. Theoretical framework and key technology of advance regional control of water inrush in coal seam floor[J]. Coal Geology & Exploration,2023,51(1):185−195.
    [22]
    郑士田. 地面定向钻进技术在煤矿陷落柱突水防治中的应用[J]. 煤炭科学技术,2018,46(7):229−233.

    ZHENG Shitian. Application of ground directional borehole technology to control prevention karst collapsed column water inrush in coal mines[J]. Coal Science and Technology,2018,46(7):229−233.
    [23]
    王进尚,姚多喜,黄 浩. 煤矿隐伏断层递进导升突水的临界判据及物理模拟研究[J]. 煤炭学报,2018,43(7):2014−2020.

    WANG Jinshang,YAO Duoxi,HUANG Hao. Critical criterion and physical simulation research on progressive ascending water inrush in hidden faults of coal mines[J]. Journal of China Coal Society,2018,43(7):2014−2020.
    [24]
    顾大钊,李井峰,曹志国,等. 我国煤矿矿井水保护利用发展战略与工程科技[J]. 煤炭学报,2021,46(10):3079−3089.

    GU Dazhao,LI Jingfeng,CAO Zhiguo,et al. Technology and engineering development strategy of water protection and utilization of coal mine in China[J]. Journal of China Coal Society,2021,46(10):3079−3089.
    [25]
    温亨聪,刘宝宝,杨海涛. 煤矿导水通道超前探查研究[J]. 煤炭技术,2020,39(12):118−121.

    WEN Tingcong,LIU Baobao,YANG Haitao. Research on advanced exploration of coalmine water-conducting channels[J]. Coal Technology,2020,39(12):118−121.
    [26]
    鲁晶津. 工作面隐伏含水断层电透视异常特征模拟研究[J]. 煤炭科学技术,2016,44(8):168−175.

    LU Jingjin. Simulation study on electrical penetration anomalous features of hidden water-bearing fault in working face[J]. Coal Science and Technology,2016,44(8):168−175.
    [27]
    孙运江,左建平,李玉宝,等. 邢东矿深部带压开采导水裂隙带微震监测及突水机制分析[J]. 岩土力学,2017,38(8):2335−2342.

    SUN Yujiang,ZUO Jianping,LI Yubao,et al. Micro-seismic monitoring on fractured zone and water inrush mechanism analysis of deep mining above aquifer in Xingdong coalmine[J]. Rock and Soil Mechanics,2017,38(8):2335−2342.
    [28]
    刘泽威,刘其声,刘 洋. 煤层底板隐伏断层分类及突水防治措施[J]. 煤田地质与勘探,2020,48(2):141−146.

    LIU Zewei,LIU Qisheng,LIU Yang. Classification of hidden faults in coal seam floor and measures for water inrush prevention[J]. Coal Geology & Exploration,2020,48(2):141−146.
    [29]
    郭惟嘉,张士川,孙文斌,等. 深部开采底板突水灾变模式及试验应用[J]. 煤炭学报,2018,43(1):219−227.

    GUO Weijia,ZHANG Shichuan,SUN Wenbin,et al. Experimental and analysis research on water inrush catastrophe mode from coal seam floor in deep mining[J]. Journal of China Coal Society,2018,43(1):219−227.
    [30]
    HU Weiyue,ZHAO Chunhu. Evolution of water hazard control technology in China’s coal mines[J]. Mine Water and the Environment,2021,40:334−344.
    [31]
    陈军涛,张 毅,武善元,等. 黄河北煤田顶底板定向注浆关键技术[J]. 煤矿安全,2021,52(5):104−111.

    CHEN Juntao,ZHANG Yi,WU Shanyuan,et al. Key technology of directional grouting in roof and floor of coal field in the north of the Yellow River[J]. Safety in Coal Mines,2021,52(5):104−111.
    [32]
    DONG Shuning,ZHENG Liwei,TANG Shengli,et al. A scientometric analysis of trends in coal mine water inrush prevention and control for the period 2000–2019[J]. Mine Water and the Environment,2020,39:3−12.
    [33]
    薛 硕,吴昊晟,倪朋勃,等. 钻时和扭矩变换方法在岩性变化判断中的应用探讨[J]. 录井工程,2021,32(2):26−30.

    XUN Shuo,WU Haocheng NI Pengbo,et al. Discussion on application of drilling time and torque conversion method in lithology change identification[J]. Mud Logging Engineering,2021,32(2):26−30.
    [34]
    王锦国,周志芳,黄 勇. 基于压水试验资料的岩体透水性分形特征研究[J]. 岩石力学与工程学报,2003,22(4):562−565. doi: 10.3321/j.issn:1000-6915.2003.04.010

    WANG Jinguo,ZHOU Zhifang,HUANG Yong. Study on permeability of rock mass based on water pressure test data by using fractal theroy[J]. Chinese Journal of Rock Mechanics and Engineering,2003,22(4):562−565. doi: 10.3321/j.issn:1000-6915.2003.04.010
  • Cited by

    Periodical cited type(7)

    1. 严红,吴林,李桂臣,宋维斌. 煤矿岩巷TBM快速掘进研究进展与展望. 煤炭工程. 2025(01): 1-7 .
    2. 张风林,唐彬,沈仁为,李宏亮,张鹏涛,程晋轶,刘震宇,侯俊领. TBM掘进煤矿深井巷道支护方案优化实践. 科技资讯. 2024(14): 103-107 .
    3. 王永军,孟凡贞,吕文茂,张垚,赵春虎,钟林华,胡东祥. 深部强矿压矿井煤层覆岩爆破卸压机理研究. 中国矿业. 2024(S2): 325-329 .
    4. 邵文琦,陈大勇,佟治,乔亮,杜浪浪,黄炳香,陈圣贺,高尚占,祁正飞,孙政. 煤矿岩巷掘进技术现状及展望. 中国矿业. 2024(11): 192-205 .
    5. 吕玉柱,孙鹏,王力强. 韩城矿区岩巷快速施工工艺匹配支护优化研究. 陕西煤炭. 2024(12): 173-177 .
    6. 满轲,武立文,刘晓丽,宋志飞,李可娜. 基于CNN-LSTM模型的TBM隧道掘进参数及岩爆等级预测. 煤炭科学技术. 2024(S2): 21-37 . 本站查看
    7. 张钦,苏金华,慎宏然,胡志飞,徐晓东,李浩,李鹏权,赵春阳,崔宗类. 某矿复杂地层硬岩巷道TBM同步探掘技术研究与实践. 现代矿业. 2023(09): 233-237 .

    Other cited types(0)

Catalog

    Article views (325) PDF downloads (159) Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return