Citation: | YIN Shangxian,XU Bin,YIN Huichao,et al. Basic structure and connotation of mine water prevention and control discipline[J]. Coal Science and Technology,2023,51(7):24−35. DOI: 10.13199/j.cnki.cst.2023-0477 |
The discipline of mine water prevention and control in China as a whole has undergone two major development processes: the initial development period in the 20th century and the growth and maturity period in the 21st century, with its basic structure and connotation already mature. According to the system theory, the generalized connotation of mine water has been expanded, the terminology and scientific scope of mine water prevention and control have been standardized, and a mine water system has been proposed, that is, a highly complex system involving a boundary from water supply to water inflow discharge and time-varying internal media structure. The water input and water inflow output are complete, and the system responds in a timely manner when mining disturbances are triggered; The basic framework of mine water prevention and control has been constructed, including two core systems: theoretical and technical systems and technical management systems; The theoretical and technical system covers theoretical basis, technical support, and engineering support, with disaster mechanism, condition evaluation, and prediction as the theoretical basis, condition exploration, prevention and treatment, and geological support as the technical support, and seven types of projects such as water exploration, waterproofing, water blocking, drainage, drainage, water interception, and water regime monitoring as the measure support; The technical management system includes advanced concepts, overall ideas, and working systems. Guided by the overall idea of “predicting and forecasting, exploring if there is any doubt, exploring before excavating, and treating before mining”, and guided by the advanced concept of combining prevention at the source, regional governance, engineering governance, and protection, the construction concept is advanced, the foundation is solid, exploration is clear, scientific and technological breakthroughs are tackled, and comprehensive governance is conducted, The “seven in one” water disaster prevention and control work system for effect evaluation and emergency rescue achieves the overall goal of reducing the impact of mine water, preventing water disaster accidents, and mitigating environmental impact. Looking forward to the future, the physical mechanism of flood disasters, the law of data driven disasters, or the integration of the two are key directions for fundamental theoretical breakthroughs, which will drive comprehensive breakthroughs in technology and engineering.
[1] |
张人权, 梁 杏, 靳孟贵, 等. 水文地质学基础[M]. 北京: 地质出版社, 2018.
|
[2] |
武 强. 我国矿井水防控与资源化利用的研究进展、问题和展望[J]. 煤炭学报,2014,39(5):795−805. doi: 10.13225/j.cnki.jccs.2014.0478
WU Qiang. Progress, problems and prospects of prevention and control technology of mine water and utilization in China[J]. Journal of China Coal Society,2014,39(5):795−805. doi: 10.13225/j.cnki.jccs.2014.0478
|
[3] |
尹尚先, 韩 永, 常浩宇, 等. 邯邢矿区岩溶水资源优化配置研究[J]. 煤炭科学技术, 2016, 44(8): 29−34.
YIN Shangxian, HAN Yong, CHANG Haoyu, et al. Study on optimal allocation of karst water resources in Hanxing Mining Area[J]. 2016, 44(8): 29−34.
|
[4] |
孙文洁,任顺利,武 强,等. 新常态下我国煤矿废弃矿井水污染防治与资源化综合利用[J]. 煤炭学报,2017,47(1):27−35. doi: 10.13225/j.cnki.jccs.FQ22.0157
SUN Wenjie,REN Shunli,WU Qiang,et al. Water pollution’s prevention and comprehensive utilization of abandoned coalmines in China under new normal life[J]. Journal of China Coal Society,2017,47(1):27−35. doi: 10.13225/j.cnki.jccs.FQ22.0157
|
[5] |
武 强,王志强,郭周克,等. 矿井水控制、处理、利用、回灌与生态环保五位一体优化结合研究[J]. 中国煤炭,2010,36(2):109−112. doi: 10.3969/j.issn.1006-530X.2010.02.031
WU Qiang,WANG Zhiqiang,GUO Zhouke,et al. A research on an optimized five-in-one combination of mine water control, treatment, utilization, back-filling and environment friendly treatment[J]. China Coal,2010,36(2):109−112. doi: 10.3969/j.issn.1006-530X.2010.02.031
|
[6] |
曾一凡,刘晓秀,武 强,等. 双碳背景下“煤-水-热”正效协同共采理论与技术构想[J]. 煤炭学报,2023,48(2):538−550. doi: 10.13225/j.cnki.jccs.XH22.1359
ZENG Yifan,LIU Xiaoxiu,WU Qiang,et al. Theory and technical conception of coal-water-thermal positive synergistic co-extraction under the dual carbon background[J]. Journal of China Coal Society,2023,48(2):538−550. doi: 10.13225/j.cnki.jccs.XH22.1359
|
[7] |
DONG Shuning, XU Bin, YIN Shangxian, et al. Water Resources Utilization and Protection in the Coal Mining Area of Northern China. Scientific Reports, 2019, 9(1): 1214.
|
[8] |
范立民,孙 强,马立强,等. 论保水采煤技术体系[J]. 煤田地质与勘探,2023,51(1):196−204. doi: 10.12363/issn.1001-1986.22.11.0865
FAN Limin,SUN Qiang,MA Liqiang,et al. Technological system of water-conserving coal mining[J]. Coal Geology & Exploration,2023,51(1):196−204. doi: 10.12363/issn.1001-1986.22.11.0865
|
[9] |
顾大钊. 煤矿地下水库理论框架和技术体系[J]. 煤炭学报, 2015, 40(2): 239−246.
GU Dazhao. Theory framework and technological system of coal mine underground reservoir]J]. Journal of China Coal Society, 2015, 40(2): 239−246.
|
[10] |
武 强, 申建军, 王 洋. “煤-水”双资源型矿井开采技术方法与工程应用[J]. 煤炭学报, 2017, 42(1): 8−16.
WU Qiang, SHEN Jianjun, WANG Yang. Mining techniques and engineering application for "Coal-Water" dual-resources mine[J] Journal of China Coal Society, 2017, 42(1): 8−16.
|
[11] |
袁 亮. 煤矿安全规程解读: 2022[M]. 北京: 应急管理出版社, 2022.
|
[12] |
尹尚先. 煤矿水害防治基础科学发展思考[J]. 煤炭工程, 2016, 48(S2): 96−100.
YIN Shangxian. Thoughts of basic science development on mine water control and prevention [J]. Coal Engineering, 2016, 48(S2): 96−100.
|
[13] |
武 强, 赵苏启, 董书宁, 等. 煤矿防治水手册[M]. 北京: 煤炭工业出版社, 2013.
|
[14] |
国家煤矿安全监察局. 煤矿防治水细则[M]. 北京: 煤炭工业出版社, 2018.
|
[15] |
武 强. 煤矿防治水细则解读[M]. 北京: 煤炭工业出版社, 2018.
|
[16] |
国家矿山安全监察局.煤矿防治水“三区”管理办法[EB/OL]. https://www.chinamine-safety.gov.cn/xw/zt/2019zt/mkfzszt/gcsy/202206/t20220624_416673.shtml, 2023-06-30.
|
[17] |
武 强,崔芳鹏,赵苏启,等. 矿井水害类型划分及主要特征分析[J]. 煤炭学报,2013(4):5. doi: 10.13225/j.cnki.jccs.2013.04.015
WU Qiang,CUI Fangpeng,ZHAO Suqi,et al. Type classification and main characteristics of mine water disasters[J]. Journal of China Coal Society,2013(4):5. doi: 10.13225/j.cnki.jccs.2013.04.015
|
[18] |
煤炭科技名词审定委员会. 煤炭科学技术名词[M]. 北京: 科学出版社, 1997.
|
[19] |
国家自然科学基金委员会.国家自然科学基金学科分类目录[EB/OL]. https://www.nsfc.gov.cn/, 2023-06-30.
|
[20] |
房正宏,李本友. 构建学科交叉为核心的研究生培养体系[J]. 国家教育行政学院学报,2017(3):56−61. doi: 10.3969/j.issn.1672-4038.2017.03.009
FANG Zhenghong,LI Benyou. On Establishing the Graduate Cultivate System around the Core idea of Disciplines-Crossing[J]. Journal of National Academy of Education Administration,2017(3):56−61. doi: 10.3969/j.issn.1672-4038.2017.03.009
|
[21] |
教育部. 普通高等学校本科专业目录2023[EB/OL]. https://www.gov.cn/zhengce/zhengceku/2023-04/20/5752327/files/7256143e8b94465d9263f5fcfae1ecb1.pdf, 2023-06-30.
|
[22] |
地质部水文地质工程地质局. 中国固体矿床水文地质分类[M]. 地质出版社, 1959.
|
[23] |
管恩太, 突水系数与煤矿水害防治[J]. 煤炭工程, 2011(1): 46-48.
GUAN Entai, Water inrush coefficient and prevention of water disasters in coal mines[J]. Coal Engineering, 2011(1): 46-48.
|
[24] |
丁 湘, 申斌学, 郑忠友, 等. 深部侏罗系矿井充水强度评价与水害风险管控[M]. 北京: 应急管理出版社, 2022.
|
[25] |
张文泉,王在勇,吴欣焘,等. 顶板离层水突涌模式及预防技术模拟研究[J]. 煤田地质与勘探,2021,49(1):217−224,231. doi: 10.3969/j.issn.1001-1986.2021.01.023
ZHANG Wenquan,WANG Zaiyong,WU Xintao,et al. Investigation and simulation on the model and prevention technology of water inrush from roof bed separation[J]. Coal Geology & Exploration,2021,49(1):217−224,231. doi: 10.3969/j.issn.1001-1986.2021.01.023
|
[26] |
尹尚先,连会青,徐 斌,等. 深部带压开采: 传承与创新[J]. 煤田地质与勘探,2021,49(1):170−181. doi: 10.3969/j.issn.1001-1986.2021.01.018
YIN Shangxin,LIAN Huiqing,XU Bin,et al. Deep mining under safe water pressure of aquifer: Inheritance and innovation[J]. Coal Geology & Exploration,2021,49(1):170−181. doi: 10.3969/j.issn.1001-1986.2021.01.018
|
[27] |
范立民,迟宝锁,王宏科,等. 鄂尔多斯盆地北部直罗组含水层研究进展与水害防治建议[J]. 煤炭学报,2022,47(10):3535−3546. doi: 10.13225/j.cnki.jccs.F022.0916
FAN Limin,CHI Baosuo,WANG Hongke,et al. Research progress of aquifer of Zhiluo Formation in northern Ordos Basin and suggestions on water hazard prevention[J]. Journal of China Coal Society,2022,47(10):3535−3546. doi: 10.13225/j.cnki.jccs.F022.0916
|
[28] |
杜 锋,李振华,姜广辉,等. 西部矿区突水溃沙类型及机理研究[J]. 煤炭学报,2017,42(7):1846−1853. doi: 10.13225/j.cnki.jccs.2017.0189
DU Feng,LI Zhenhua,JIANG Guanghui,et al. Types and mechanism of water-sand inrush disaster in west coal mine[J]. Journal of China Coal Society,2017,42(7):1846−1853. doi: 10.13225/j.cnki.jccs.2017.0189
|
[29] |
国家煤矿安全监察局. 煤矿防治水规定释义[M]. 徐州: 中国矿业大学出版社, 2009.
|
[30] |
赵庆彪. 奥灰岩溶水害区域超前治理技术研究及应用[J]. 煤炭学报,2014,39(6):1112−1117. doi: 10.13225/j.cnki.jccs.2014.0475
ZHAO Qingbiao. Ordovician limestone Karst water disaster regional advanced governance technology study and application[J]. Journal of China Coal Society,2014,39(6):1112−1117. doi: 10.13225/j.cnki.jccs.2014.0475
|
[31] |
YIN Huichao, XU Bin, YIN Shangxian, et al. Prevention of water inrushes in deep coal mining over the Ordovician aquifer: a case study in the Wutongzhuang coal mine of China[J]. Geofluids, 2021(11): 1−13.
|
[32] |
范立民,孙 魁,李 成,等. 榆神矿区煤矿防治水的几点思考[J]. 煤田地质与勘探,2021,49(1):182−188. doi: 10.3969/j.issn.1001-1986.2021.01.019
FAN Limin,SUN Kui,LI Cheng,et al. Thoughts on mine water control and treatment in Yushen mining area[J]. Coal Geology & Exploration,2021,49(1):182−188. doi: 10.3969/j.issn.1001-1986.2021.01.019
|
[33] |
尹尚先,徐 维,尹慧超,等. 深部开采底板厚隔水层突水危险性评价方法研究[J]. 煤炭科学技术,2020,48(1):83−89. doi: 10.13199/j.cnki.cst.2020.01.011
YIN Shangxian,XU Wei,YIN Huichao,et al. Study on risk assessment method of water inrush from thick floor aquifuge in deep mining[J]. Coal Science and Technology,2020,48(1):83−89. doi: 10.13199/j.cnki.cst.2020.01.011
|
[34] |
尹尚先,吴志远. 钱家营井田构造复杂程度定量评价[J]. 煤矿安全,2019,50(5):218−221. doi: 10.13347/j.cnki.mkaq.2019.05.053
YIN Shangxian,WU Zhiyuan. Quantitative Evaluation of Structural Complexity of Qianjiaying Mine Field[J]. Safety in Coal Mine,2019,50(5):218−221. doi: 10.13347/j.cnki.mkaq.2019.05.053
|
[35] |
司马丹琪. 矿山帷幕注浆防治水工程质量评价方法研究[D]. 武汉: 武汉工程大学, 2018.
SIMA Danqi. Research on quality evaluation method of water prevention and control in mine curtain grouting[D]. Wuhan : Wuhan Institute of Technology, 2018.
|
[36] |
唐辉明. 工程地质学基础[M]. 北京: 化学工业出版社, 2007.
|
[37] |
白先春. 统计综合评价方法与应用[M]. 北京: 中国统计出版社, 2013 .
|
[38] |
武 强,董东林,石占华,等. 可视化地下水模拟评价新型软件系统(Visual Modflow)与矿井防治水[J]. 煤炭科学技术,2000,28(2):3.
WU Qiang,DONG Donglin,SHI Zhanhua,et al. A new software system for visual groundwater simulation and evaluation (Visual Modflow) and mine water control[J]. Coal Science and Technology,2000,28(2):3.
|
[39] |
李文平, 乔 伟, 李小琴, 等. 深部矿井水害特征、评价方法与治水勘探方向[J]. 煤炭学报, 2019, 44(8): 2437−2448.
LI Wenping, QIAO Wei, LI Xiaoqin, et al Characteristics of water disaster, evaluation methods and exploration direction for controlling groundwater in deep mining[J]. Journal of China Coal Society, 2019, 44(8): 2437−2448.
|
[40] |
YIN Shangxian, ZHANG Jincai, LIU Demin. A study of mine water inrushes by measurements of in situ stress and rock failures[J]. Natural Hazards , 2015, 79: 1961–1979.
|
[41] |
尹尚先, 连会青, 刘德民, 等. 华北型煤田岩溶陷落柱研究70年: 成因·机理·防治[J]. 煤炭科学技术, 2019, 47(11): 1−29.
YIN Shangxin, LIAN Huiqing, LIU Demin, et al. 70 years of investigation on Karst collapse column in North China Coalfield: cause of origin, mechanism and prevention[J] Journal of China Coal Society, 2019, 47(11): 1−29.
|
[42] |
贾建称,贾 茜,桑向阳,等. 我国煤矿地质保障系统建设30年: 回顾与展望[J]. 煤田地质与勘探,2023,51(1):86−106. doi: 10.12363/issn.1001-1986.22.07.0564
JIA Jiancheng,JIA Qian,SANG Xiangyang,et al. Review and prospect of coal mine geological guarantee system in China during 30 years of construction[J]. Coal Geology & Exploration,2023,51(1):86−106. doi: 10.12363/issn.1001-1986.22.07.0564
|
[43] |
中国国家标准化管理委员会. GB/T 12719-2021矿区水文地质工程地质勘查规范[M]. 北京: 中国标准出版社, 2021.
|
[44] |
尹尚先,王 屹,尹慧超,等. 深部底板奥灰薄灰突水机理及全时空防治技术[J]. 煤炭学报,2020,45(5):1855−1864.
YIN Shangxian,WANG Yi,YIN Huichao,et al. Mechanism and full-time-space prevention and control technology of water inrush from Ordovician and thin limestone in deep mines[J]. Journal of China Coal Society,2020,45(5):1855−1864.
|
[45] |
连会青,徐 斌,田振焘,等. 矿井水情监测与水害风险预警平台设计与实现[J]. 煤田地质与勘探,2021,49(1):198−207. doi: 10.3969/j.issn.1001-1986.2021.01.021
LIAN Huiqing,XU Bin,TIAN Zhentao,et al. Design and implementation of mine water hazard monitoring and early warning platform[J]. Coal Geology & Exploration,2021,49(1):198−207. doi: 10.3969/j.issn.1001-1986.2021.01.021
|
[46] |
范立民,孙 魁,李 成,等. 西北大型煤炭基地地下水监测背景、思路及方法[J]. 煤炭学报,2020,45(1):317−329.
FAN Limin,SUN Kui,LI Cheng,et al. Background, thought and method of groundwater monitoring in large coal base of northwest China[J]. Journal of China Coal Society,2020,45(1):317−329.
|
[47] |
尹尚先, 王玉国, 李文生. 矿井水灾害: 原因·对策·出路[J]. 煤田地质与勘探, 2023, 51(1): 214−221.
YIN Shangxian, WANG Yuguo, LI Wensheng. Cause, countermeasures and solutions of water hazards in coal mines in China[J]. Coal Geology & Exploration, 2023, 51(1): 214−221.
|
[48] |
尹尚先,武 强. 陷落柱概化模式及突水力学判据[J]. 北京科技大学学报,2006,28(9):812−817. doi: 10.13374/j.issn1001-053x.2006.09.003
YIN Shangxian,WU Qiang. Generalized model of collapse column and criterion of water inrush[J]. Journal of University of Science and Technology Beijing,2006,28(9):812−817. doi: 10.13374/j.issn1001-053x.2006.09.003
|
[49] |
YIN Huichao,WU Qiang,YIN Shangxian,et al. Predicting mine water inrush accidents based on water level anomalies of borehole groups using long short-term memory and isolation forest[J]. Journal of Hydrology,2023,616:128813. doi: 10.1016/j.jhydrol.2022.128813
|
[50] |
贺耀宜,刘丽静,赵立厂,等. 基于工业物联网的智能矿山基础信息采集关键技术与平台[J]. 工矿自动化,2021,47(6):17−24. doi: 10.13272/j.issn.1671-251x.17798
HE Yaoyi,LIU Lijing,ZHAO Lichang,et al. Key technology and platform of intelligent mine basic information acquisition based on industrial Internet of things[J]. Journal of Mine Automation,2021,47(6):17−24. doi: 10.13272/j.issn.1671-251x.17798
|
1. |
董书宁,于树江,董兴玲,张步勤,郭小铭,王晓东,王凯,朱世彬,武博强,刘磊. 煤基固废与高盐废水“固液协同”充填处置关键技术. 煤田地质与勘探. 2025(01): 163-173 .
![]() | |
2. |
孟瑞艳,周晓芳,王新富,张雷,王彦君,章梅,吴求刚. 新汶矿区煤矸石理化特征分析及生态风险评价. 中国煤炭地质. 2025(01): 50-56 .
![]() | |
3. |
王振刚,马杨爱,朱才辉,张佳瑶,曲波. 黄河流域陕西段大宗固废煤矸石综合利用现状与展望. 中国矿业. 2025(03): 305-315 .
![]() | |
4. |
崔昕茹,霍雪萍,周炳杰,胡蕴瑶,杨彦群,杨凤玲,狄子琛. 我国煤矸石空间分布特征与分级分质利用路径. 环境科学. 2025(04): 2281-2291 .
![]() | |
5. |
杨旭,丁子昭,孔令宇,孟凡燃,黄艳利,杨伟,李俊孟. 煤基固废多源信息数据库构建及利用路径评价. 矿业安全与环保. 2025(02): 172-178 .
![]() | |
6. |
王少力,亢福仁,张凯煜,黄苑平,刘馨月,张生. 煤基固废基质对紫穗槐种子萌发及幼苗生长的影响. 现代园艺. 2024(01): 54-58 .
![]() | |
7. |
李恩伟,张世文,周思雨,董祥林,马军,蔡慧珍,胡睿鑫. 基于CiteSpace的煤基固废三化研究热点分析. 辽宁工业大学学报(社会科学版). 2024(01): 32-37 .
![]() | |
8. |
卞正富,张益东,王猛,王长申,韩晓彤,牟守国,任清晨,李国栋. 新疆煤炭资源开发潜力与开发策略. 煤炭学报. 2024(02): 967-977 .
![]() | |
9. |
郭慧超. 化工固体废弃物的资源化利用. 山西化工. 2024(03): 245-246 .
![]() | |
10. |
杨科,何淑欣,何祥,初茉,周伟,袁宁,陈登红,龚鹏,张元春. 煤电化基地大宗固废“三化”协同利用基础与技术. 煤炭科学技术. 2024(04): 69-82 .
![]() | |
11. |
刘浪,罗屹骁,朱梦博,苏臣,吴涛涛,王建友,杭彦龙. 建筑物下特厚煤层镁渣基全固废连采连充开采技术与实践. 煤炭科学技术. 2024(04): 83-92 .
![]() | |
12. |
吴玉意,刘成勇,张鹏,刘文涛,黄剑斌,刘治成,王翰秋. 综采抛矸充填技术原理及抛沙试验研究. 煤炭工程. 2024(05): 69-74 .
![]() | |
13. |
李明,李起行,吴相儒,邬志雄. 粉煤灰膏体充填材料工作性能影响因素研究. 矿业研究与开发. 2024(06): 65-71 .
![]() | |
14. |
赵康,伍俊,马超,朱开成,聂晶磊,胡华龙. 我国煤矿固、液、气“三废”地质封存研究现状与生态环境协同发展的关系. 煤炭学报. 2024(06): 2785-2798 .
![]() | |
15. |
李忠宝. 煤炭洗选废弃物处理与资源化利用研究. 黑龙江环境通报. 2024(08): 102-104 .
![]() | |
16. |
郑向东,李明,刘威,王新富,赵恒,李建,周晓芳. 皖北矿区煤矸石理化特征分析及生态风险评价. 能源与环保. 2024(09): 175-180+186 .
![]() | |
17. |
邓友生,董晨辉,吴阿龙,庄子颖,陈茁. 我国煤矸石山综合治理现状及零碳治理探索. 煤矿安全. 2024(10): 120-128 .
![]() | |
18. |
李新旺,吴荣元,李磊,祁义飞,程立朝,李丽. 粉煤灰/煤矸石离层注浆充填材料性能研究. 煤炭与化工. 2024(10): 1-5+11 .
![]() | |
19. |
单成方,吴来伟,李亚锋,韩创业,龙岩,李俊孟,齐文跃. 新疆地区烧变岩分布特征与资源化利用对策. 矿业安全与环保. 2024(05): 162-167 .
![]() | |
20. |
宋伟,刘成勇,杨军军,王若帆,张新福,刘东升. 煤矸石规模化处置及高附加值利用现状与展望. 矿业研究与开发. 2024(11): 268-282 .
![]() | |
21. |
乔波,杨澜,王红星,邢涛,于利红,王振华,姜晓枫. 新疆煤灰在不同高铬砖表面的侵蚀性研究. 山东化工. 2024(22): 65-69 .
![]() | |
22. |
朱磊,刘治成,刘成勇,赵萌烨,贾金兑,丁自伟. 基于孔隙率和粒径的煤矸石力学性能预测试验研究. 西安科技大学学报. 2024(06): 1083-1094 .
![]() | |
23. |
刘鹏亮. 煤基固废充填材料及充填工艺发展现状与展望. 矿产保护与利用. 2024(06): 15-24 .
![]() | |
24. |
张计林. 煤矸石路基含水率对路基沉降的影响分析及控制措施. 交通世界. 2024(36): 108-110 .
![]() | |
25. |
朱琦,胡振琪,叶春,李春华,李冲. 基于化学-微生物法的煤矸石山酸化污染原位控制技术研究进展. 中国矿业. 2023(01): 52-59 .
![]() | |
26. |
张吉雄,周楠,高峰,闫浩. 煤矿开采嗣后空间矸石注浆充填方法. 煤炭学报. 2023(01): 150-162 .
![]() | |
27. |
范晓平,刘京,康哲,董学光. 煤矸石综合利用与矿山生态修复的战略思考. 环境卫生工程. 2023(01): 8-15 .
![]() | |
28. |
吴长亮,王文龙,王旭江,李敬伟. 煤矸石在建材领域的资源化研究现状及创新利用策略. 能源环境保护. 2023(01): 167-177 .
![]() | |
29. |
王伟,张志义,赵博. 煤矿井下风积沙箱式充填体侧向约束机理数值研究. 新疆大学学报(自然科学版)(中英文). 2023(03): 367-372 .
![]() | |
30. |
肖元庚. 城市固体废弃物处理及资源化利用途径. 皮革制作与环保科技. 2023(09): 131-133 .
![]() | |
31. |
赵学松,刘琦. 煤基固体废弃物制备压裂支撑剂研究进展. 洁净煤技术. 2023(06): 161-172 .
![]() | |
32. |
徐文彬,陈伟. 不同倾角充-岩组合体三轴压缩力学特性及破坏特征. 矿业科学学报. 2023(05): 633-641 .
![]() | |
33. |
张道平. 矿用煤矸石混凝土力学性能试验研究. 煤. 2023(09): 1-5 .
![]() | |
34. |
李宏伟,燕可洲,文朝璐,柳丹丹,郭彦霞,张圆圆. 煤矸石制备活性炭-介孔硅复合材料及其过程物相转变. 煤炭科学技术. 2023(09): 310-319 .
![]() | |
35. |
方屹,杨浪,饶峰,张凯铭,宁旭文. 煤矸石的地质聚合反应资源化利用研究进展. 矿业研究与开发. 2023(12): 206-213 .
![]() | |
36. |
武浩洁. 碳硅复合介孔材料对水体中NO_3~-的吸附机制分析及研究. 山西化工. 2023(12): 13-14+25 .
![]() | |
37. |
原新宇,刘树龙,余青龙,张敏哲,王贻明,许宏图,苏凤波,李敏. 煤矸石基胶结充填体力学性能及微观结构演化研究. 现代矿业. 2023(12): 207-212 .
![]() | |
38. |
韩崇刚. “双碳”目标下煤基固废高值化处理与综合利用研究. 煤炭经济研究. 2023(12): 30-35 .
![]() | |
39. |
李家新,王文峰,陆青锋,车可心,刘恒言. 新疆地区不同岩性煤矸石重金属元素释放规律研究. 煤炭科学技术. 2023(S2): 328-335 .
![]() | |
40. |
李永亮,路彬,杨仁树,林海,徐斌,王树帅,刘晨辉. 煤矿连采连充式胶结充填采煤技术与典型工程案例. 煤炭学报. 2022(03): 1055-1071 .
![]() | |
41. |
桑树勋,袁亮,刘世奇,韩思杰,郑司建,刘统,周效志,王冉. 碳中和地质技术及其煤炭低碳化应用前瞻. 煤炭学报. 2022(04): 1430-1451 .
![]() | |
42. |
徐连兵,卓锦德,张凯. 大型煤电化基地固废分质分类资源化利用研究. 中国煤炭. 2022(07): 131-136 .
![]() | |
43. |
吴昊天,王晨光,黄进,耿可明. 新疆煤渣对高铬砖侵蚀性能的影响. 煤化工. 2022(04): 70-73+100 .
![]() | |
44. |
王艳,左震,文波,高冠一. 煤矸石粗集料理化性质和形状特征对混凝土强度的影响. 矿业科学学报. 2022(05): 554-564 .
![]() | |
45. |
张强,王云搏,张吉雄,左小,杨军辉,张昊,巨峰,孙忠良,魏连河,史磊. 煤矿固体智能充填开采方法研究. 煤炭学报. 2022(07): 2546-2556 .
![]() | |
46. |
吴蒙,秦云虎,李国璋,申建,宋雪娟,朱士飞,韩磊. 煤炭地下气化影响因素及评价方法研究进展. 煤炭科学技术. 2022(08): 259-269 .
![]() | |
47. |
王玉涛. 煤矸石固废无害化处置与资源化综合利用现状与展望. 煤田地质与勘探. 2022(10): 54-66 .
![]() | |
48. |
黄艳利,郭亚超,齐文跃,李俊孟,高华东,欧阳神央,吴来伟,阮泽宇. 西部典型矿区采动地下水流场演变特征与工作面涌水控制技术. 中国科学基金. 2022(06): 1016-1026 .
![]() | |
49. |
杨科,赵新元,何祥,魏祯. 多源煤基固废绿色充填基础理论与技术体系. 煤炭学报. 2022(12): 4201-4216 .
![]() | |
50. |
李衡,刘伦强,周雪军. 新疆润田煤矿矸石充填开采系统设计. 科技创新与应用. 2021(18): 78-79+83 .
![]() | |
51. |
董兴玲,董书宁,王皓,王宝,王强民,周振方,张溪彧. 古土壤层对煤矸石淋滤液中典型污染物的防污性能. 煤炭学报. 2021(06): 1957-1965 .
![]() | |
52. |
于昊辰,陈浮,尹登玉,韩晓彤,牟守国,雷少刚,卞正富. 采矿与气候变化对戈壁矿区土地生态系统的影响——以准东煤炭基地为例. 煤炭学报. 2021(08): 2650-2663 .
![]() |