Advance Search

XU Zhimin,CHEN Tianci,LIU Shuanshuan,et al. Characteristics of water-bearing media in Jurassic strata and groundwater occurrence and migration law in Yili Mining Area, Xinjiang[J]. Coal Science and Technology,2023,51(7):140−151

. DOI: 10.13199/j.cnki.cst.2023-0335
Citation:

XU Zhimin,CHEN Tianci,LIU Shuanshuan,et al. Characteristics of water-bearing media in Jurassic strata and groundwater occurrence and migration law in Yili Mining Area, Xinjiang[J]. Coal Science and Technology,2023,51(7):140−151

. DOI: 10.13199/j.cnki.cst.2023-0335

Characteristics of water-bearing media in Jurassic strata and groundwater occurrence and migration law in Yili Mining Area, Xinjiang

Funds: 

National Natural Science Foundation of China (42130706); National Natural Science Foundation of China (42172272); Fundamental Research Funds for Central Universities (2020ZDPY0201)

More Information
  • Received Date: March 04, 2023
  • Available Online: June 29, 2023
  • Taking the Yili mining area in Xinjiang as an example, combined with the typical hydrogeological characteristics of the Tianshan Mountains, such as strong snowmelt runoff and uneven permeability of Jurassic coal-rich strata, the macroscopic hydrogeological conditions, microscopic water-bearing media characteristics and water-rich law of the main aquifers (aquicludes) layers in the mining area were systematically studied by means of field sampling, electron microscope scanning, mercury injection experiment, X-ray diffraction and pumping test. The hydrodynamic characteristics and migration law of aquifers under special stratigraphic and geomorphological conditions are revealed. The results show that the effective porosity range of the sandstone aquifer in the roof and floor of the Jurassic main coal seam in the study area is 17.1%-29.5%, and the effective porosity range of the Neogene and Jurassic aquiclude is 17.6%-29.0%. The aquifers (aquicludes) layer contains high clay minerals, which are expanded and argillized in water. The special microstructure and mineral composition make the aquifers (aquicludes) layer show the characteristics of high porosity and poor permeability. In the study area, the water abundance of the Quaternary pore aquifer and the Jurassic main coal seam roof and floor sandstone aquifer is weak, and some areas show moderate water abundance, mainly static reserves, with block characteristics. The hydrodynamic characteristics and migration law of the main aquifers (aquicludes) are systematically studied. The Quaternary system is affected by the macro-geomorphology and hydrogeological conditions of the piedmont, showing the dynamic characteristics of ‘slope transit flow’ in the form of pore phreatic water with high intensity flow. At the same time, it is blocked by the lower Neogene mudstone aquifuge and has no hydraulic connection with the sandstone aquifer of the roof of the coal measures. The sandstone aquifer of the 5# coal seam floor mainly affects the coal seam mining, in view of this layer, the “factory” shape of “lateral closure and lateral cover” was constructed in a large range and the dredging effect was remarkable, which created good hydrogeological conditions for underground mining. The relevant research results reveal the characteristics of special water-bearing media and the law of water storage and water control formed by the Jurassic coal-rich strata in the study area under the influence of sedimentary environment, which can provide certain theoretical and engineering basis for water prevention and control under similar mining conditions in the study area and western mining area.

  • [1]
    中华人民共和国国家统计局, 中华人民共和国2022年国民经济和社会发展统计公报[R]. 北京: 中国国家统计局, 2023.
    [2]
    中华人民共和国国家统计局. 中国统计年鉴[M]. 北京: 中国统计出版社, 2022: 275−279.
    [3]
    中国煤炭工业协会, 2021煤炭行业发展年度报告[R]. 北京: 中国煤炭工业协会, 2022.
    [4]
    董书宁,姬亚东,王 皓,等. 鄂尔多斯盆地侏罗纪煤田典型顶板水害防控技术与应用[J]. 煤炭学报,2020,45(7):2367−2375.

    DONG Shuning,JI Yadong,WANG Hao,et al. Prevention and control technology and application of roof water disaster in Jurassic coal field of Ordos Basin[J]. Journal of China Coal Society,2020,45(7):2367−2375.
    [5]
    王双明,段中会,马 丽,等. 西部煤炭绿色开发地质保障技术研究现状与发展趋势[J]. 煤炭科学技术,2019,47(2):1−6.

    WANG Shuangming,DUAN Zhonghui,MA Li,et al. Research status and future trends of geological assurance technology for coal green development in Western China[J]. Coal Science and Technology,2019,47(2):1−6.
    [6]
    霍 超. 新疆煤炭资源分布特征与勘查开发布局研究[J]. 中国煤炭,2020,46(10):16−21. doi: 10.3969/j.issn.1006-530X.2020.10.002

    HUO Chao. Research on distribution characteristics and exploration and development layout of coal resources in Xinjiang[J]. China Coal,2020,46(10):16−21. doi: 10.3969/j.issn.1006-530X.2020.10.002
    [7]
    邸春生,丁 湘,黄 浩. 深埋侏罗系煤层顶板水探放技术实践-以呼吉尔特矿区葫芦素矿井为例[J]. 煤田地质与勘探,2016,44(6):96−100. doi: 10.3969/j.issn.1001-1986.2016.06.018

    DI Chunsheng,DING Xiang,HUANG Hao. Practice of exploration and discharge technology of roof water in deep Jurassic coal seam: with Hu Lusu coal mine in Hujiert mine area as example[J]. Coal Geology & Exploration,2016,44(6):96−100. doi: 10.3969/j.issn.1001-1986.2016.06.018
    [8]
    宋 洋,迟宝明,谷洪彪,等. 新生代以来伊犁盆地演化对霍城地区第四系含水层建造的影响[J]. 科学技术与工程,2015,15(9):156−163. doi: 10.3969/j.issn.1671-1815.2015.09.027

    SONG Yang,CHI Baoming,GU Hongbiao,et al. Study of cenozoic evolution of Yili Basin Impaction on the quaternary aquifer construction in Huocheng Area[J]. Science Technology and Engineering,2015,15(9):156−163. doi: 10.3969/j.issn.1671-1815.2015.09.027
    [9]
    武 强,申建军,王 洋. “煤-水”双资源型矿井开采技术方法与工程应用[J]. 煤炭学报,2017,42(1):8−16.

    WU Qiang,SHEN Jianjun,WANG Yang. Mining techniques and engineering application for “Coal-Water” dual-resources mine[J]. Journal of China Coal Society,2017,42(1):8−16.
    [10]
    冯 洁,侯恩科,王苏健,等. 陕北侏罗系沉积控水规律与沉积控水模式[J]. 煤炭学报,2021,46(5):1614−1629.

    FENG Jie,HOU Enke,WANG Sujian,et al. Law and model of Jurassic sedimentary water control in Northern Shaanxi Province[J]. Journal of China Coal Society,2021,46(5):1614−1629.
    [11]
    杨 鹏,杨伟峰,马荣坤. 锦界煤矿侏罗系砂岩微观孔隙结构类型及富水性研究[J]. 煤炭科学技术,2021,49(8):188−194.

    YANG Peng,YANG Weifeng,MA Rongkun. Study on microscopic pore structure types of Jurassic sandstone and water abundance in Jinjie Coal Mine[J]. Coal Science and Technology,2021,49(8):188−194.
    [12]
    张玉军,宋业杰,樊振丽,等. 鄂尔多斯盆地侏罗系煤田保水开采技术与应用[J]. 煤炭科学技术,2021,49(4):159−168.

    ZHANG Yujun,SONG Yejie,FAN Zhenli,et al. Technology and application of water-preserving mining in Jurassic coalfield in Ordos Basin[J]. Coal Science and Technology,2021,49(4):159−168.
    [13]
    田继军,何 静,韦 波,等. 塔里木盆地西南缘侏罗系沉积演化及聚煤主控因素研究[J]. 煤炭科学技术,2018,46(2):35−44, 102.

    TIAN Jijun,HE Jing,WEI Bo,et al. Study on Jurassic sedimentary evolution and main control factors of coal accumulation in southwest margin of Tarim Basin[J]. Coal Science and Technology,2018,46(2):35−44, 102.
    [14]
    徐智敏,高 尚,孙亚军,等. 西部典型侏罗系富煤区含水介质条件与水动力学特征[J]. 煤炭学报,2017,42(2):444−451.

    XU Zhimin,GAO Shang,SUN Yajun,et al. A study of conditions of water bearing media and water dynamics in typical Jurassic coal rich regions in western China[J]. Journal of China Coal Society,2017,42(2):444−451.
    [15]
    刘 钦. 哈密矿区侏罗系弱胶结砂岩结构及渗流模型研究[D]. 徐州: 中国矿业大学, 2018: 23−24.

    LIU Qin. Study on the Structure and Seepage Model of Jurassic Weak Cemented Sandstone in Hami Mining Area[D]. Xuzhou: China University of Mining and Technology, 2018: 23−24.
    [16]
    刘 钦,孙亚军,徐智敏,等. 侏罗系弱胶结砂岩孔隙介质特征及其保水采煤意义[J]. 煤炭学报,2019,44(3):858−865.

    LIU Qin,SUN Yajun,XU Zhimin,et al. Pore media characteristics of weak cemented sandstone and its significance for water-preserved coal mining[J]. Journal of China Coal Society,2019,44(3):858−865.
    [17]
    倪仕琪,宋继叶,蔡煜琦,等. 伊犁盆地南缘郎卡地区中侏罗统西山窑组沉积特征及演化[J]. 沉积学报,2021,39(2):434−445.

    NI Shiqi,SONG Jiye,CAI Yuqi,et al. Sedimentary characteristics and evolution of the Middle Jurassic Xishanyao Formation in the Langka area, Southern Margin of the Yili Basin[J]. Acta Sedimentologica Sinica,2021,39(2):434−445.
    [18]
    焦国华,张卫平,谢利华,等. 准噶尔盆地南部下侏罗统三工河组沉积体系及其控制因素[J]. 古地理学报,2023,25(3):628−647.

    JIAO Guohua,ZHANG Weiping,XIE Lihua,et al. Depositional system and their controlling factors of the Lower Jurasic Sangonghe Formation in southern Junggar Basin[J]. Journal of Palaeogeography (Chinese Edition),2023,25(3):628−647.
    [19]
    王强民,王 皓,杨 建,等. 西部侏罗系矿区充水含水层水文地球化学特征及矿井水来源综合识别[J]. 工程地质学报,2021,29(4):1084−1093.

    WANG Qiangmin,WANG Hao,YANG Jian,et al. Hydrogeochemical characteristics of main water filled aquifers and source indicators of mine water in typical Jurassic mine area of Western China[J]. Journal of Engineering Geology,2021,29(4):1084−1093.
    [20]
    石守桥,吴复柱,边 凯. 弱胶结覆岩导水裂隙带高度预测及三维空间发育特征[J]. 采矿与安全工程学报,2022,39(6):1154−1160.

    SHI Shouqiao,WU Fuzhu,BIAN Kai. Height prediction and three-dimensional development characteristics of water-conducting fracture zone in weakly cemented overburden[J]. Journal of Mining & Safety Engineering,2022,39(6):1154−1160.
    [21]
    钟大康,朱筱敏,文应初. 准噶尔盆地阜东斜坡侏罗系砂岩成岩作用、孔隙演化及次生孔隙预测[J]. 中国海上油气,2003,17(4):27−29.

    ZHONG Dakang,ZHU Xiaomin,WEN Yingchu. Diagenesis, pore evolution and secondary porosity prediction of Jurassic sandstone in Fudong slope, Junggar Basin[J]. China Offshore Oil and Gas,2003,17(4):27−29.
    [22]
    张云鹏,李玉宏,郭 望,等. 柴达木盆地北缘侏罗系陆相低熟页岩孔隙发育特征及主控因素[J]. 地质学报,2021,95(2):565−577.

    ZHANG Yunpeng,LI Yuhong,GUO Wang,et al. Characteristics and main controlling factors of pore structures in low thermal maturity continental shale of Jurassic, northern Qaidam basin[J]. Acta Geologica Sinica,2021,95(2):565−577.
    [23]
    李 锟,于炳松,王黎栋,等. 塔里木盆地东南地区侏罗系低孔渗砂岩储层成岩作用及孔隙演化[J]. 现代地质,2014,28(2):388−395. doi: 10.3969/j.issn.1000-8527.2014.02.017

    LI Kun,YU Bingsong,WANG Lidong,et al. Diagenesis and pore evolution of jurassic low-porosity and low-permeability sandstone reservoir in Southeastern Tarim Basin[J]. Geoscience,2014,28(2):388−395. doi: 10.3969/j.issn.1000-8527.2014.02.017
    [24]
    司马立强,马 骏,刘俊丰,等. 柴达木盆地涩北地区第四系泥岩型生物气储层孔隙有效性评价[J]. 岩性油气藏,2023,35(2):1−10. doi: 10.12108/yxyqc.20230201

    SIMA Liqiang,MA Jun,LIU Junfeng,et al. Evaluation of pore effectiveness of Quaternary mudstone biogas reservoirs in Sebei area, Qaidam Basin[J]. Lithologic Reservoirs,2023,35(2):1−10. doi: 10.12108/yxyqc.20230201
    [25]
    张 浩,毛 锐,金力新,等. 高含黏土岩心有效孔隙度实验新方法-以准噶尔盆地玛湖凹陷上乌尔禾组砾岩储层为例[J]. 地球物理学进展,2022,37(4):1669−1676. doi: 10.6038/pg2022FF0300

    ZHANG Hao,MAO Rui,JIN Lixin,et al. New experimental method for effective porosity of high clay content cores: a case study on conglomerate reservoirs of Upper Urho Formation in Mahu sag, Junggar Basin[J]. Progress in Geophysics,2022,37(4):1669−1676. doi: 10.6038/pg2022FF0300
    [26]
    ZENG Yifan,MENG Shihao,WU Qiang,et al. Ecological Water Security Impact of Large Coal Base Development and its Protection[J]. Journal of Hydrology,2023:129319.
    [27]
    崔思源. 大南湖矿区侏罗系弱胶结含水介质及水动力特征研究[D]. 徐州: 中国矿业大学, 2017: 50−59.

    CUI Siyuan. Study on Hydro-dynamic Field and Media Characteristics of Weakly-Cemented Jurassic Aquifer in Dananhu Area[D]. Xuzhou: China University of Mining and Technology, 2017: 50−59.
  • Related Articles

    [1]DU Huadong, LIU Yunlong, BI Yinli, SUN Hao, NING Benyan. Spatial-temporal heterogeneity of landscape ecological risk in Yushenfu Mining Area from 1995 to 2021[J]. COAL SCIENCE AND TECHNOLOGY, 2024, 52(6): 270-279. DOI: 10.12438/cst.2023-0762
    [2]XIE Xiaoshen, HOU Enke, WANG Shuangming, ZHAO Bingchao, LONG Tianwen, FENG Dong, HOU Pengfei, ZHANG Qi. Syudy on water loss model and prediction technology of aquifer induced by coal mining in Yushenfu Mining Area in the middle reaches of the Yellow River[J]. COAL SCIENCE AND TECHNOLOGY, 2023, 51(12): 197-207. DOI: 10.12438/cst.2023-0860
    [3]WANG Chunlei, CHI Mingbo, CUI Dongliang, LI Yu, CAO Zhiguo. Water prevention technology of shallow-buried depth and super large mining height fully-mechanized mining face passing surface channel flow[J]. COAL SCIENCE AND TECHNOLOGY, 2021, 49(11): 142-149.
    [4]LIU Ji, GAO Min, JIN Dewu, YANG Jian, WANG Qiangmin. Hydrochemical characteristics of surface water and analysis on influence factors in Yushen Mining Area[J]. COAL SCIENCE AND TECHNOLOGY, 2020, 48(7).
    [5]PENG Jie, LI Cheng, XIANG Maoxi, LI Yonghong, WU Boyun, GAO Shuai, SUN Kui. Influence of coal mining on phreatic aquifer and its environmentaleffects in Yulin-Shenmu-Fugu Area[J]. COAL SCIENCE AND TECHNOLOGY, 2018, (2).
    [6]Fan Limin wu Boyun Xiang Maoxi Peng Jie Gao Shuai, . Study on protective burnt rock aquifer in water preserved coal mining area of western China[J]. COAL SCIENCE AND TECHNOLOGY, 2016, (8).
    [7]Zhang Baojian Zhang Ke Gao Zongjun Zhang Fengyu Hao Shuanhu Fan Yao, . Jurassic underground water system in Ordos Basin and mine water prevention and control countermeasures[J]. COAL SCIENCE AND TECHNOLOGY, 2016, (3).
    [8]Yan Jiaping Cheng Fangkui Gong Chuangang Gu Deming Fan Tingyu Liu Jie Meng Hao Yu Huaijun Zhang Bing, . Plain reservoir construction and water resources protection and utilization of Linhuan Mining Area in . Huaibei[J]. COAL SCIENCE AND TECHNOLOGY, 2015, (8).
    [9]XU Yan-chun YANG Yang, . New Progress on Floor Grouting Reinforcement Technology of Water Control in Coal Mining Face[J]. COAL SCIENCE AND TECHNOLOGY, 2014, (1).
    [10]Modern Coal Mining Affected to Underground Water Deposit Environment in West China Mining Area[J]. COAL SCIENCE AND TECHNOLOGY, 2012, (12).
  • Cited by

    Periodical cited type(21)

    1. 张兵, 张梦昭, 梁权宇, 樊勇, 孙伟, 钱涵. 谦比希铜矿涌水水化学特征及防治技术应用. 矿业研究与开发. 2025(07)
    2. 王强. 高河井田井下断层附近地下水突水数值研究. 煤矿现代化. 2025(05)
    3. 任乐,丁启振,周殷竹,周金龙. 吐鲁番市高昌区南部绿洲区低水位期地下水化学变化规律及来源解析. 环境科学. 2025(01): 227-238 .
    4. 曹杰,邢立亭,陈洪年,张飞,邢学韬,刘锁柱,赵洋洋,邓兴,高帅. 陶枣盆地岩溶水水化学特征及劣变机制. 安全与环境工程. 2025(02): 282-294 .
    5. 杨旭,冯蕾,李氡,高晗,徐博. 基于DPSR模型的废弃矿区地质灾害形成特征与安全影响综合评价. 中国锰业. 2025(01): 109-113+122 .
    6. 焦华喆,陈曦,张铁岗,杨柳华,陈新明,HONAKER Rick,马俊伟,余洋. 黄河流域煤炭开发区地下水污染成因分析及防治建议. 中国地质. 2024(01): 143-156 .
    7. 刘伟韬,李蓓蓓,杜衍辉,韩梦珂,赵吉园. 基于改进的SSA-BP神经网络的矿井突水水源识别模型研究. 工矿自动化. 2024(02): 98-105+115 .
    8. 杜华栋,谢姗姗,毕银丽,刘研,孙浩,刘云龙. 半干旱矿区采动地裂缝发育对幼苗库及其建植因子影响. 煤炭科学技术. 2024(02): 350-362 . 本站查看
    9. 刘晓宏,雷少毅. 榆神矿区面临的水文地质问题及其精细勘查. 陕西煤炭. 2024(06): 106-109+137 .
    10. 华照来,范立民,李增林,孙魁,王路,吕扬,马万超,李强. 古河道砂岩含水层水资源保护与水害防治方法. 绿色矿山. 2024(01): 64-74 .
    11. 孙魁,范立民,马万超,陈建平,彭捷,张鹏华,高帅,李成,苗彦平,王宏科. 鄂尔多斯盆地北部直罗组地下水地球化学特征及其指示意义. 煤炭学报. 2024(04): 2004-2020 .
    12. 李杰,席义苗,曹楠楠,马越. 高强度开采条件下安全回采地质保障技术研究. 煤炭与化工. 2024(05): 43-46+62 .
    13. 梅傲霜,曾一凡,武强,刘志超,苗彦平,王嗣桐,崔雅帅,魏华铭,任帅锋,杨磊. 西部矿区地下水系统水化学过程及其采动激发效应. 煤炭学报. 2024(06): 2769-2784 .
    14. 冯丽敏,李文博,李朗,贺小桐,黄晓燕. 宿迁市地下水水化学特征及水质评价. 地下水. 2024(04): 39-43+154 .
    15. 潘军. 基于Piper-层次聚类-灰色关联度的突水水源识别. 煤炭科学技术. 2024(S1): 221-227 . 本站查看
    16. 王方田,孙暖,张村,郭中权,窦凤金. 矿井采空区水库水岩作用净水机理研究进展及展望. 绿色矿山. 2024(03): 246-257 .
    17. 华照来,范立民,李增林,王路,吕扬,李小龙. 论《煤矿防治水细则》中的“勘探清楚”问题. 中国煤炭地质. 2024(10): 39-44 .
    18. 王志奇,来永伟. 田庄煤矿岩溶水水地球化学演化模式研究. 煤炭经济研究. 2024(S1): 101-110 .
    19. 郭艳,桂和荣,魏久传,胡满聪,郭祥东,聂锋,陈永青,解建,叶爽,李俊. 区域注浆扰动下渗流场-化学场演化及耦合作用. 煤炭科学技术. 2023(07): 152-166 . 本站查看
    20. 代彬,郭巧玲,陈梓楹,张肖萌,于荣. 乌兰木伦河流域地下水水化学同位素特征及补给关系. 水资源与水工程学报. 2023(04): 15-22 .
    21. 曾一凡,包函,武强,孟世豪,华照来,苗彦平,张晔,卜文扬. 新近系保德组沉积薄弱区红土阻水性能及其资源开发意义. 煤田地质与勘探. 2023(10): 62-71 .

    Other cited types(9)

Catalog

    Article views (157) PDF downloads (86) Cited by(30)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return