CHI Xiaolou,YANG Ke,FU Qiang,et al. Mechanical behavior and stability control of regenerated roof in long wall stratified mining of thick steeply dipping coal seam[J]. Coal Science and Technology,2023,51(6):1−10
. DOI: 10.13199/j.cnki.cst.2023-0334Citation: |
CHI Xiaolou,YANG Ke,FU Qiang,et al. Mechanical behavior and stability control of regenerated roof in long wall stratified mining of thick steeply dipping coal seam[J]. Coal Science and Technology,2023,51(6):1−10 . DOI: 10.13199/j.cnki.cst.2023-0334 |
This study focused on the stability control of roof in long wall stratified mining of large dip angle thick coal seam. Taking Panbei Coal Mine in Huainan as an example, the effect mechanism of water content, compression ratio and grain size grading on the compression characteristics of gangue is analyzed by comprehensive application of gangue lateral compression test, 3D imaging borehole detection test, physical simulation and numerical simulation method. In addition, the effect of these factors on the stability of the reclaimed roof were also analyzed, the structural characteristics and stress state of the reclaimed roof were obtained, the dynamic behavior of the reclaimed roof was revealed, the stability control measures of the reclaimed roof were formulated, and the control effect of the reclaimed roof stability was evaluated. The research results indicate that the clay minerals of goaf mudstone and sandy mudstone are beneficial for the secondary cementation of gangue. The contact state and stress state of the gangue during compression under load are constantly adjusted, manifested as the compression and bonding degree of the lower and upper gangue being higher than that of the middle, with the compression and bonding degree of the middle and upper gangue being the smallest, and the regenerated roof being more prone to damage. The particle size distribution of gangue is the main factor affecting the shear strength of recycled roof. As the particle size of the gangue increases, the regenerated roof exhibits ductile failure that slides along the shear line to the staggered and bulging of the gangue particles. That is, the degree of mining fracture in the lower part of the regenerated roof tends to be milder than in the middle and upper parts, and the middle and upper parts are the key prevention and control areas for the stability control of the regenerated roof. The deflection of the main stress can lead to the fracture of the regenerated roof, so a plan for the collapse of the regenerated roof and the grouting.
[1] |
伍永平,贠东风,解盘石,等. 大倾角煤层长壁综采: 进展、实践、科学问题[J]. 煤炭学报,2020,45(1):24−34.
WU Yongping,YUN Dongfeng,XIE Panshi,et al. Progress, practice and scientific issues in steeply dipping coal seams fully-mechanized mining[J]. Journal of China Coal Society,2020,45(1):24−34.
|
[2] |
杨 科,池小楼,刘钦节,等. 大倾角煤层综采工作面再生顶板与支架失稳机理[J]. 煤炭学报,2020,45(9):3045−3053. doi: 10.13225/j.cnki.jccs.2019.0854
YANG Ke,CHI Xiaolou,LIU Qinjie,et al. Cataclastic regenerated roof and instability mechanism of support in fully mechanized mining face of steeply dipping seam[J]. Journal of China Coal Society,2020,45(9):3045−3053. doi: 10.13225/j.cnki.jccs.2019.0854
|
[3] |
翟晓荣,吴基文,胡 儒,等. 分岔煤层下分层再生顶板地面预注浆加固区域研究[J]. 煤炭科学技术,2022,50(11):30−39. doi: 10.13199/j.cnki.cst.2021-0349
ZHAI Xiaorong,WU Jiwen,HU Ru,et al. Study on surface pre-grouting reinforcement layer of stratified regeneated roof under bifurcated coal seam[J]. Coal Science and Technology,2022,50(11):30−39. doi: 10.13199/j.cnki.cst.2021-0349
|
[4] |
解盘石,张颖异,张艳丽,等. 大倾角大采高煤矸互层顶板失稳规律及对支架的影响[J]. 煤炭学报,2021,46(2):344−356. doi: 10.13225/j.cnki.jccs.xr20.1866
XIE Panshi,ZHANG Yingyi,ZHANG Yanli,et al. Instability law of the coal-rock interbedded roof and its influence on supports in large mining height working face with steeply dipping coal seam[J]. Journal of China Coal Society,2021,46(2):344−356. doi: 10.13225/j.cnki.jccs.xr20.1866
|
[5] |
YAO Qiangling,LI Xuehua,SUN Boyang,et al. Numerical investigation of the effects of coal seam dip angle on coal wall stability[J]. International Journal of Rock Mechanics and Mining Sciences,2017,100:298−309. doi: 10.1016/j.ijrmms.2017.10.002
|
[6] |
袁 永,屠世浩,窦凤金,等. 大倾角综放面支架失稳机理及控制[J]. 采矿与安全工程学报,2008,25(4):430−434. doi: 10.3969/j.issn.1673-3363.2008.04.011
YUAN Yong,TU Shihao,DOU Fengjin,et al. Instability mechanism and control of large dip angle fully mechanized caving face[J]. Journal of Mining and Safety Engineering,2008,25(4):430−434. doi: 10.3969/j.issn.1673-3363.2008.04.011
|
[7] |
WU Yongping,HU Bosheng,LANG Ding,et al. Risk assessment approach for rockfall hazards in steeply dipping coal seams[J]. International Journal of Rock Mechanics and Mining Sciences,2021,138:104626. doi: 10.1016/j.ijrmms.2021.104626
|
[8] |
王 平,冯 涛,蒋运良,等. 软弱再生顶板巷道围岩失稳机理及其控制原理与技术[J]. 煤炭学报,2019,44(10):2953−2965. doi: 10.13225/j.cnki.jccs.2019.0022
WANG Ping,FENG Tao,JIANG Yunliang,et al. Control principle and technology and instability mechanism of surrounding rock in weak regenerated roof[J]. Journal of China Coal Society,2019,44(10):2953−2965. doi: 10.13225/j.cnki.jccs.2019.0022
|
[9] |
MA Wenqinag,WANG Tongxu. Instability mechanism and control countermeasure of a cataclastic roadway regenerated roof in the extraction of the remaining mineral resources: a case study[J]. Rock Mechanics and Rock Engineering,2019,52:2437−2457. doi: 10.1007/s00603-018-1705-9
|
[10] |
闫 浩,张吉雄,张 升,等. 散体充填材料压实力学特性的宏细观研究[J]. 煤炭学报,2017,42(2):413−420. doi: 10.13225/j.cnki.jccs.2016.6020
YAN Hao,ZHANG Jixiong,ZHANG Sheng,et al. Macro and mesoscopic study on the compressive properties of bulk filling materials[J]. Journal of China Coal Society,2017,42(2):413−420. doi: 10.13225/j.cnki.jccs.2016.6020
|
[11] |
吴疆宇,靖洪文,浦 海,等. 分形矸石胶结充填体的宏细观力学特性[J]. 岩石力学与工程学报,2021,40(10):2083−2100. doi: 10.13722/j.cnki.jrme.2021.0234
WU Jiangyu,JING Hongwen,PU Hai,et al. Macroscopic and mesoscopic mechanical properties of cemented waste rock backfill using fractal gangue[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(10):2083−2100. doi: 10.13722/j.cnki.jrme.2021.0234
|
[12] |
巨 峰,宁 湃,何泽全,等. 压实过程中煤矸石颗粒流细观演化规律研究[J]. 采矿与安全工程学报,2020,37(1):183−191. doi: 10.13545/j.cnki.jmse.2020.01.021
JU Feng,NING Pai,HE Zequan,et al. Study on particle flow mesoscopic evolution law of coal gangue in compaction process[J]. Journal of Mining and Safety Engineering,2020,37(1):183−191. doi: 10.13545/j.cnki.jmse.2020.01.021
|
[13] |
HUANG Yanli,LI Junmeng,MA Dan,et al. Triaxial compression behaviour of gangue solid wastes under effects of particle size and confining pressure[J]. Science of the Total Environment,2019,693(25):133607.
|
[14] |
李 猛,张卫清,李艾玲,等. 矸石充填材料承载压缩变形时效性试验研究[J]. 采矿与安全工程学报,2020,37(1):147−154. doi: 10.13545/j.cnki.jmse.2020.01.016
LI Meng,ZHANG Weiqing,LI Ailing,et al. Experimental study on time effect of bearing compression deformation of gangue filling materials[J]. Journal of Mining and Safety Engineering,2020,37(1):147−154. doi: 10.13545/j.cnki.jmse.2020.01.016
|
[15] |
钱自卫,曹丽文,姜振泉,等. 煤矸石侧限加载-浸水-卸载实验研究[J]. 采矿与安全工程学报,2013,30(4):578−582.
QIAN Ziwei,CAO Liwen,JIANG Zhenquan,et al. Experimental study on confined loading-water immersion-unloading of coal gangue[J]. Journal of Mining & Safety Engineering,2013,30(4):578−582.
|
[16] |
罗生虎,伍永平,刘孔智,等. 大倾角大采高综采工作面煤壁非对称受载失稳特征[J]. 煤炭学报,2018,43(7):1829−1836. doi: 10.13225/j.cnki.jccs.2018.0134
LUO Shenghu,WU Yongping,LIU Kongzhi,et al. Asymmetric load and instability characteristics of coal wall at large mining height fully-mechanized face in steeply dipping seam[J]. Journal of China Coal Society,2018,43(7):1829−1836. doi: 10.13225/j.cnki.jccs.2018.0134
|
[17] |
张 超,展旭财,杨春和. 粗粒料强度及变形特性的细观模拟[J]. 岩土力学,2013,34(7):2077−2083. doi: 10.16285/j.rsm.2013.07.011
ZHANG Chao,ZHAN Xucai,YANG Chunhe. Mesoscopic simulation of strength and deformation characteristics of coarse grained materials[J]. Rock and Soil Mechanics,2013,34(7):2077−2083. doi: 10.16285/j.rsm.2013.07.011
|
[18] |
BISHOP W A HENKEL-D-J. The measurement of soils properties in triaxial test[R]. London: Edward Arnold Ltd, 1962.
|
[19] |
胡炳南,郭爱国. 矸石充填材料压缩仿真实验研究[J]. 煤炭学报,2009,34(8):1076−1080. doi: 10.3321/j.issn:0253-9993.2009.08.014
HU Bingnan,GUO Aiguo. Testing study on coal waste back filling material compression simulation[J]. Journal of China Coal Society,2009,34(8):1076−1080. doi: 10.3321/j.issn:0253-9993.2009.08.014
|
[20] |
钱鸣高,许家林. 煤炭开采与岩层运动[J]. 煤炭学报,2019,44(4):973−984. doi: 10.13225/j.cnki.jccs.2019.0337
QIAN Minggao,XU Jialin. Behaviors of strata movement in coal mining[J]. Journal of China Coal Society,2019,44(4):973−984. doi: 10.13225/j.cnki.jccs.2019.0337
|
[21] |
池小楼,杨 科,刘文杰,等. 大倾角煤层分层综采再生顶板破断规律研究[J]. 岩土力学,2022,43(5):1391−1400. doi: 10.16285/j.rsm.2021.1563
CHI Xiaolou,YANG Ke,LIU Wenjie,et al. Study on the broken law of regenerated roof in fully mechanized coal seam with large dip Angle[J]. Rock and Soil Mechanics,2022,43(5):1391−1400. doi: 10.16285/j.rsm.2021.1563
|
[22] |
池小楼,杨 科,付 强,等. 大倾角煤层分层综采再生顶板应力分布规律研究[J]. 采矿与安全工程学报,2022,39(5):891−900. doi: 10.13545/j.cnki.jmse.2021.0412
CHI Xiaolou,YANG Ke,FU Qiang,et al. Study on stress distribution law of regenerated roof in fully-mechanized slicing mining of steeply dipping coal seam[J]. Science of the Total Environment,2022,39(5):891−900. doi: 10.13545/j.cnki.jmse.2021.0412
|
1. |
池小楼,韦忠华,杨科,王春梅,王同. 大倾角煤层下分层复采破碎顶板注浆改性试验研究. 煤炭科学技术. 2025(02): 27-40 .
![]() | |
2. |
解盘石,黄宝发,伍永平,罗生虎,朱明建,易磊磊,徐辉,陈建杰. 大倾角工作面覆岩三维破断运移演化规律. 煤炭科学技术. 2025(02): 12-26 .
![]() | |
3. |
孟巧荣,王慧娴,王朋飞,陈可夯,张建利,董恩远,高翔,侯伟. 深埋倾斜特厚煤层窄煤柱护巷机理与围岩控制. 煤炭科学技术. 2024(03): 38-52 .
![]() | |
4. |
张创业,杨磊. 复合再生顶板条件下煤体固化与顶板强化技术研究及应用. 煤炭工程. 2024(06): 48-54 .
![]() | |
5. |
胡博胜,伍永平,文虎,解盘石,王红伟. 大倾角工作面飞矸冲击破碎特征研究. 煤炭科学技术. 2024(10): 1-10 .
![]() | |
6. |
潘坤,鞠文君,王俊超,贾后省,侯彪,王银伟,张志明. 大倾角近距离煤层综采运输巷断面形状与支护参数优化. 煤炭科学技术. 2024(12): 12-22 .
![]() |