Advance Search
BI Yinli,YANG Wei,KE Zengming,et al. Effect of AMF inoculation on root distribution and water use efficiency of Amorpha fruticosa L in western coal mining area[J]. Coal Science and Technology,2024,52(3):311−322. DOI: 10.13199/j.cnki.cst.2023-0330
Citation: BI Yinli,YANG Wei,KE Zengming,et al. Effect of AMF inoculation on root distribution and water use efficiency of Amorpha fruticosa L in western coal mining area[J]. Coal Science and Technology,2024,52(3):311−322. DOI: 10.13199/j.cnki.cst.2023-0330

Effect of AMF inoculation on root distribution and water use efficiency of Amorpha fruticosa L in western coal mining area

Funds: 

National Natural Science Foundation of China (52394194); National Key Research and Development Program of China (2022YFF1303303); Joint Research Funding Project for Ecological Protection and High-quality Development of the Yellow River Basin (2022-YRUC-01-0304)

More Information
  • Received Date: March 16, 2023
  • Available Online: March 18, 2024
  • Coal mining in arid and semi-arid areas has led to the emergence of large areas of coal mining subsiding areas. The ecological reclamation of mining areas is hard, and the mycorrhizal microbial technology for ecological restoration has become a current research hotspot. To investigate the effects of arbuscular mycorrhizal fungi (AMF) inoculation on the root distribution characteristics and water use efficiency (WUE) of Amorpha fruticosa L. Three experimental treatments were set up: control without planting A fruticosa L seedlings (CK1), planting A fruticosa L seedlings (CK), planting A fruticosa L seedlings and inoculated with AMF (+AM). The plant growth indicators and soil moisture were measured, and the results showed that: ① AMF inoculation effectively promoted the growth of A fruticosa L. Compared with CK treatment, the plant height, SPAD value, aboveground biomass and aboveground biomass increased by 38.5%, 27.5%, 11.1% and 69.4%, respectively; ② Inoculation changed the root distribution of A fruticosa L and increased the total root length and the number of root tips by 329.0% and 586.1%, respectively. Besides, reduced the average root diameter by 22.9%, and increased the proportion of fine roots below 2 mm by 370.1%. At the same time, inoculation affected soil water distribution and water use pattern of A fruticosa L. Compared with CK treatment, the soil water content of 0-20 cm increased by 8.9% and 7.8%, and the soil water content of 20−50 cm decreased by 16.8%, 4.0% and 11.6%, respectively. The water use ratio of A fruticosa L to soil below 5 cm was increased by 15.4% and 9.9% at 5-30 cm and 30-50 cm, respectively; ③ Inoculation increased the WUE of A fruticosa L by 27.5%. The results of principal component analysis showed that fine root length (0.5−1.00 mm) and root tip number in the roots of A fruticosa L were the key root characteristics for the efficient use of soil water by AMF inoculation under drought stress. In conclusion, inoculation with mycorrhizal fungi can significantly promote the growth of A fruticosa L seedlings, promote the absorption and redistribution ability of soil water through the significant improvement of the fine root characteristic parameters of A fruticosa L, and then make A fruticosa L plants show a high WUE. The results of this study can provide a scientific guidance and technical support for the biological combined remediation technology in the western coal mining settlement area.

  • [1]
    曹志国,张建民,王 皓,等. 西部矿区煤水协调开采物理与情景模拟实验研究[J]. 煤炭学报,2021,46(2):638−651.

    CAO Zhiguo,ZHANG Jianmin,WANG Hao,et al. Physical modelling and scenario simulation of coal & water co-mining in coal mining areas in western China[J]. Journal of China Coal Society,2021,46(2):638−651.
    [2]
    王双明,杜华栋,王生全. 神木北部采煤塌陷区土壤与植被损害过程及机理分析[J]. 煤炭学报,2017,42(1):17−26.

    WANG Shuangming,DU Huadong,WANG Shengquan. Analysis of damage process and mechanism for plant community and soil properties atnorthern Shenmu subsidence mining area[J]. Journal of China Coal Society,2017,42(1):17−26.
    [3]
    许传阳,马守臣,张合兵,等. 煤矿沉陷区沉陷裂缝对土壤特性和作物生长的影响 [J]. 中国生态农业学报,2015,23(5):597−604.

    XU Chuanyang,MA Shouchen,ZHANG Hebing,et al. Effect of cracks on soil characteristics and crop growth in subsidedcoal mining areas [J]. Chinese Journal of Eco-Agriculture,2015,23(5):597−604.
    [4]
    张延旭,毕银丽,王 瑾. 接种菌根对采煤沉陷区苜蓿生长及土壤改良影响研究[J]. 煤炭科学技术,2020,48(4):142−147.

    ZHANG Yanxu,BI Yinli,WANG Jin. Research on effect of arbuscular mycorrhizal fungi on alfalfa growth and soil improvement in mining subsidence area[J]. Coal Science and Technology,2020,48(4):142−147.
    [5]
    BI Y,ZHANG J,SONG Z,et al. Arbuscular mycorrhizal fungi alleviate root damage stress induced by simulated coal mining subsidence ground fissures[J]. Science of the Total Environment,2019,652:398−405. doi: 10.1016/j.scitotenv.2018.10.249
    [6]
    LUGINBUEHL L H,MENARD G N,KURUP S ,et al. Fatty acids in arbuscular mycorrhizal fungi are synthesized by the host plant [J]. Sciene,2017,356(6343):1175−1178.
    [7]
    BI Y,WU C,WANG S,et al. Combined arbuscular mycorrhizal inoculation and loess amendment improve rooting and revegetation post-mining[J]. Rhizosphere,2022,23:100560. doi: 10.1016/j.rhisph.2022.100560
    [8]
    毕银丽,申慧慧. 西部采煤沉陷地微生物复垦植被种群自我演变规律[J]. 煤炭学报,2019,44(1):307−315.

    BI Yinli,SHEN Huihui. Effect of micro-reclamation on different planted forest on the vegetation self-succession in the western mining subsidence area[J]. Journal of China Coal Society,2019,44(1):307−315.
    [9]
    张延旭,毕银丽,郭 楠,等. 接种不同丛枝菌根真菌对黄花苜蓿生长影响[J]. 煤炭学报,2019,44(12):3815−3822.

    ZHANG Yanxu,BI Yinli,GUO Nan,et al. Effects of arbuscular mycorrhizal fungi on the growth of Medicago falcata[J]. Journal of China Coal Society,2019,44(12):3815−3822.
    [10]
    ZHAO R,GUO W,Bi N,et al. Arbuscular mycorrhizal fungi affect the growth,nutrient uptake and water status of maize (Zea mays L. ) grown in two types of coal mine spoils under drought stress[J]. Applied Soil Ecology,2015,88:41−49. doi: 10.1016/j.apsoil.2014.11.016
    [11]
    HAO Z P,XIE W,JIANG X L,et al. Arbuscular mycorrhizal fungus improves Rhizobium-Glycyrrhiza seedling symbiosis under drought stress[J]. Agronomy-Basey,2019,9(10):572. doi: 10.3390/agronomy9100572
    [12]
    任建廷. 风积沙采煤沉陷区AM真菌与其它土壤微生物的多样性及其分布[D]. 呼和浩特:内蒙古大学,2017.

    REN Jianting. Biodiversity and distribution of Arbuscular Mycorrhizal Fungi(AMF) and other soil microorganism of aeolian sandy coal mining subsidence area [D]. Hohhot:Inner Mongolia University ,2017.
    [13]
    毕银丽,吴王燕,刘银平. 丛枝菌根在煤矸石山土地复垦中的应用[J]. 生态学报,2007,27(9):3738−3743.

    BI Yinli,WU Wangyan,LIU Yinping. Application of arbuscular mycorrhizas in land reclam ation of coal spoil heaps[J]. Acta Ecologica Sinica,2007,27(9):3738−3743.
    [14]
    毕银丽,江 彬,秦芳玲,等. 干旱半干旱煤矿区联合接菌对土壤改良动态生态效应[J]. 农业工程学报,2021,37(7):85−93.

    BI Yinli,JIANG Bin,QIN Fangling,et al. Effects of combined inoculation microbes on soil dynamic improvement in coal miningsubsidence areas[J]. Transactions of the Chinese Society of Agricultural Engineering,2021,37(7):85−93.
    [15]
    杨 皓,刘 超,张树同,等. 不同载体菌肥对紫穗槐生长和光合特性及土壤养分的影响 [J]. 南京林业大学学报(自然科学版),2022:1021−1026.

    YANG Hao,LIU Chao,ZHANG Shutong,et al. Effects of different carrier bacterial fertilizers on growth,photosynthetic characteristics and soil nutrients of Amorpha fruticosa [J]. Journal of Nanjing Forestry University (Natural Sciences Edition) ,2022:1021−1026.
    [16]
    赵雅倩. 毛乌素沙地紫穗槐长根苗培育技术研究 [D]. 杨凌:西北农林科技大学,2017.

    ZHAO Yaqian. Study on long root-seeding cultivation technique of Amoerpha fruticosa in Muus desert [D]. Yangling:Northwest A & F University,2017.
    [17]
    宋海凤,李绍才,孙海龙,等. 根施不同浓度多效唑对紫穗槐生长特性和相关生理指标的影响[J]. 植物生理学报,2015,51(9):1495−1501.

    SONG Haifeng,LI Shaocai,SUN Hailong,et al. Effects of soil-applied paclobutrazol on growth and physiological character-istics of Amorpha fruticosa[J]. Plant Physiology Journal,2015,51(9):1495−1501.
    [18]
    闫永庆,朱 虹,刘兴亮,等. 盐胁迫对紫穗槐生长发育及生理特性的影响[J]. 东北农业大学学报,2008,39(12):31−35.

    YAN Yongqing,ZHU Hong,LIU Xingliang,et al. Effect of salt stress on Amorpha fraticosa L. growth and physiological index[J]. Journal of Northeast Agricultural University,2008,39(12):31−35.
    [19]
    毕银丽,李明超,柯增鸣,等. 土层重构模式下接种DSE对玉米根系形态及水分利用的影响[J]. 煤炭学报,2023,48(8):3191−3203.

    3-03-16]. BI Yinli,LI Mingchao,KE Zengming,et al. Effects of DSE inoculation on maize growth and water use under soil reconfigu-ration mode [J] . Journal of China Coal Society,2023,48(8):3191−3203.
    [20]
    CUI Q F,FENG Z P,YANG X T. Distributions of fine and coarse tree roots in a semi-arid mountain region and their relationships with soil properties[J]. Trees-Structuer and Funtion,2017,31(2):607−616. doi: 10.1007/s00468-016-1493-3
    [21]
    谢 靖. 丛枝菌根真菌提高黄土高原紫穗槐抗旱能力的研究[D]. 杨凌:西北农林科技大学,2012.

    XIE Jing. Effects of arbuscular mycorrhizal fungi on drought resistance of Amorpha fruticosa on the loess plateau under water stress [D]. Yangling:Northwest A & F University,2012.
    [22]
    陈 婕,谢 靖,唐 明. 水分胁迫下丛枝菌根真菌对紫穗槐生长和抗旱性的影响[J]. 北京林业大学学报,2014,36(6):142−148.

    CHEN Jie,XIE Jing,TANG Ming. Effects of arbuscular mycorrhizal fungi on the growth anddrought resistance of Amorpha fruticosa under water stress[J]. Journal of Beijing Forestry University,2014,36(6):142−148.
    [23]
    ZHU J M,INGRAM P A,BENFEY P N,et al. From lab to field,new approaches to phenotyping root system architecture[J]. Current Opinion in Plant Biology,2011,14(3):310−317. doi: 10.1016/j.pbi.2011.03.020
    [24]
    KALDOER M,LUDWIG-MULLER J. AM fungi might affect the root morphology of maize by increasing indole-3-butyric acid biosynthesis[J]. Physiologia Plantarum,2000,109(1):58−67. doi: 10.1034/j.1399-3054.2000.100109.x
    [25]
    吴强盛,袁芳英,费永俊,等. 丛枝菌根真菌对白三叶根系构型和糖含量的影响[J]. 草业学报,2014,23(1):199−204.

    WU Qiangsheng,YUAN Fangying,FEI Yongjun,et al. Effects of arbuscular mycorrhizal fungi on root system architecture and sugar contents of white clover[J]. Acta Prataculturae Sinica,2014,23(1):199−204.
    [26]
    毕银丽,周会丽,马少鹏,等. 接菌对花生耐旱及表型结构的影响:以陕北煤矿区为例[J]. 煤炭学报,2021,46(6):1936−1944.

    BI Yinli,ZHOU Huili,MA Shaopeng,et al. Effects of bacterial inoculation on drought tolerance and phenotypic structure of peanut:Take coal mining area of Northern Shaanxi as example[J]. Journal of China Coal Society,2021,46(6):1936−1944.
    [27]
    刘凯洋,邱智军,张巧明,等. 丛枝菌根真菌对砷胁迫下棉花根系形态和生理特征的影响[J]. 西北植物学报,2021,41(7):1188−1198.

    LIU Kaiyang,QIU Zhijun,ZHANG Qiaoming,et al. Effect of arbuscular mycorrhizal fungi on root morphological and physiological characteristics of cotton under arsenic stress[J]. Acta Botanica Boreali-Occidentalia Sinica,2021,41(7):1188−1198.
    [28]
    LI T,REN J,HE W,et al. Anatomical structure interpretation of the effect of soil environment on fine root function[J]. Frontiers in Plant Science,2022,13:993127. doi: 10.3389/fpls.2022.993127
    [29]
    SMITH S E,SMITH F A. Fresh perspectives on the roles of arbuscular mycorrhizal fungi in plant nutrition and growth[J]. Mycologin,2012,104(1):1−13. doi: 10.3852/11-229
    [30]
    毕银丽,高学江,柯增鸣,等. 露天煤矿排土场土层重构及接菌对植物根系提水作用试验研究[J]. 煤田地质与勘探,2022,50(12):12−20.

    BI Yinli,GAO Xuejiang,KE Zengming,et al. Experimental study on effect of soil layer reconstruction and inoculation on plant root hydraulic lift in open-pit coal mine dump[J]. Coal Geology & Exploration,2022,50(12):12−20.
    [31]
    HILLEL D. Salinity management for sustainable irrigation :integrating science,environment,and economics [J]. Environmentally & Socially Sustainable Development,2000,8:20842.
    [32]
    SONG X,GAO X,WU P,et al. Drought responses of profile plant-available water and fine-root distributions in apple (Malus pumila Mill. ) orchards in a loessial,semi-arid,hilly area of China[J]. Science of the Total Environment,2020,723:137739. doi: 10.1016/j.scitotenv.2020.137739
    [33]
    谷 裕,王金满,刘慧娟,等. 干旱半干旱煤矿区土壤含水率研究进展[J]. 灌溉排水学报,2016,35(4):81−86.

    GU Yu,WANG Jinman,LIU Huijuan,et al. Advance of soil moisture in arid and semi-arid mining areas[J]. Journal of Irrigation and Drainage,2016,35(4):81−86.
    [34]
    BERRUTI A,LUMINI E,BALESTRINI R,et al. Arbuscular mycorrhizal fungi as natural biofertilizers:Let's benefit from past successes[J]. Frontiers in Microbiology,2016,6:426.
    [35]
    GONG M,TANG M,CHEN H,et al. Effects of two Glomus species on the growth and physiological performance of Sophora davidii seedlings under water stress[J]. New Forests,2013,44(3):399−408. doi: 10.1007/s11056-012-9349-1
    [36]
    李机密,黄儒珠,王 健,等. 陆生植物水分利用效率[J]. 生态学杂志,2009,28(8):1655−1663.

    LI Jimi,HUANG Ruzhu,WANG Jian,et al. Water use efficiency of terrestrial plants[J]. Chinese Joumal of Ecology,2009,28(8):1655−1663.
    [37]
    邢 丹,韩世玉,罗朝斌,等. 接种丛枝菌根真菌对干旱条件下桑树生长及水分利用效率的影响[J]. 蚕业科学,2019,45(4):475−483.

    XING Dan,HAN Shiyu,LUO Chaobin,et al. Effects of arbuscular mycorrhizal fungi on mulberry growth and water use efficiency under drought condition[J]. Science of Sericulture,2019,45(4):475−483.
    [38]
    邢 丹. 石漠化地区丛枝菌根真菌促进桑树根系水分吸收的机理研究 [D]. 贵阳:贵州大学,2018.

    XING Dan. Mechanisms underlying the promotion of arbuscular mycorrhiza fungi to water absorption of mulberry roots fromrocky desertification habitats [D]. Guiyang:Guizhou University,2018
    [39]
    PENUELAS,JOSEP,CANADELL,JOSEP G,et al. Increased water-use efficiency during the 20th century did not translate into enhanced tree growth[J]. Global Ecology and Biogeography,2011,20(4):597−608. doi: 10.1111/j.1466-8238.2010.00608.x
    [40]
    ZHANG T,HU Y,ZHANG K,et al. Arbuscular mycorrhizal fungi improve plant growth of Ricinus communis by altering photosynthetic properties and increasing pigments under drought and salt stress[J]. Industrial Crops and Products,2018,117:13−19. doi: 10.1016/j.indcrop.2018.02.087
  • Cited by

    Periodical cited type(3)

    1. 王明川,汤智德,谢安强,简灵静,林晗,王英姿,陈灿. 低磷胁迫时混合内生真菌对杉木幼苗的促生作用. 东北林业大学学报. 2025(01): 1-9 .
    2. 贺琴,李钢铁,麻云霞. 干旱胁迫下接种AM真菌对文冠果幼苗根系的影响. 内蒙古农业大学学报(自然科学版). 2025(02): 9-17 .
    3. 毕银丽,武超,彭苏萍,田乐煊,张延旭. 西部煤矿区微生物修复促进植物水分高效利用策略. 煤炭学报. 2024(02): 1003-1010 .

    Other cited types(0)

Catalog

    Article views (71) PDF downloads (21) Cited by(3)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return