Citation: | GUAN Xuemao,LI Xuefeng,ZHANG Haibo,et al. Research and application of inorganic and organic composite grouting reinforcement materials in deep weak rock[J]. Coal Science and Technology,2023,51(8):1−11. DOI: 10.13199/j.cnki.cst.2023-0216 |
In response to the problems of large deformation, fracture closure and poor permeability of the surrounding rocks in the weak rock roadways of the 1 000 m or deeper coal mines, it is required that the grouting material has good injectability, fast solidification speed, high early strength, and strong bonding performance. A new method of synergistic preparation of inorganic grouting materials was designed using "component optimization + ultra-fine + nano-reinforcement + organic modification". An inorganic grouting material with an optimum composition ratio of 50∶40∶10 for the ternary cementing system of calcium sulphate aluminate, gypsum and lime was developed. After ultra grinding, the compressive strength of the concretion increased by 163.0% within 4 hours, achieving initial early strength and rapid solidification. A nano-lithium-aluminium hydrotalcite reinforcement material with synergistic effects of nano-nucleation-induced crystallization and lithium ion promotion was developed, resulting in a 183.7% increase in the 2 h strength of the ultra grinding grouting material. The organic modifier with directional coupling effect at the coal-rock interface was synthesized, which formed a bridge through bonding with the grout and coal interface, significantly improving the bonding between the slurry concretion and the coal rock interface. The synergistically prodeuced inorganic-organic composite grouting reinforcement materials has small particle size (D95 < 10 μm), fast setting (< 8 min), high early strength (2 h strength 11.5 MPa), and strong bonding performance (sandstone bonding strength 3.12 MPa). The inorganic-organic composite grouting reinforcement materials with "high early strength, high injectability and high bonding" properties for weak rocks in deep mines have been developed. The field application test adopted high-pressure grouting method, and the grout can be injected into large and micro cracks of the coal sample, connecting isolated cracks to achieve high-pressure splitting, and the loose coal mass was compacted. Microscopic observation showed that the grout under high pressure injection can increase the fissure opening and inject more grout into microfissures. Finally, the development direction of grouting materials in the future is proposed.
[1] |
谢和平,高 峰,鞠 杨,等. 深部开采的定量界定与分析[J]. 煤炭学报,2015,40(1):1−10.
XIE Heping,GAO Feng,JU Yang,et al. Quantitative definition and investigation of deep mining[J]. Journal of China Coal Society,2015,40(1):1−10.
|
[2] |
谢和平,高 峰,鞠 杨. 深部岩体力学研究与探索[J]. 岩石力学与工程学报,2015,34(11):2161−7218.
XIE Heping,GAO Feng,JU Yang. Research and development of rock mechanics in deep ground engineering[J]. Chinese Journal of Rock Mechanics and Engineering,2015,34(11):2161−7218.
|
[3] |
康红普,王国法,姜鹏飞,等. 煤矿千米深井围岩控制及智能开采技术构想[J]. 煤炭学报,2018,43(7):1789−1800.
KANG Hongpu,WANG Guofa,JIANG Pengfei,et al. Conception for strata control and intelligent mining technology in deep coal mines with depth more than 1 000 m[J]. Journal of China Coal Society,2018,43(7):1789−1800.
|
[4] |
康红普,姜鹏飞,黄炳香,等. 煤矿千米深井巷道围岩支护-改性-卸压协同控制技术[J]. 煤炭学报,2020,45(3):845−864.
KANG Hongpu,JIANG Pengfei,HUANG Bingxiang,et al. Roadway strata control technology by means of bolting-modification-destressing in synergy in 1 000 m deep coal mines[J]. Journal of China Coal Society,2020,45(3):845−864.
|
[5] |
姜鹏飞,康红普,王志根,等. 千米深井软岩大巷围岩锚架充协同控制原理、技术及应用[J]. 煤炭学报,2020,45(3):1020−1035.
JIANG Pengfei,KANG Hongpu,WANG Zhigen,et al. Principle, technology and application of soft rock roadway strata control by means of “rock bolting, U-shaped yielding steel arches and back filling” in synergy in 1 000 m deep coal mine[J]. Journal of China Coal Society,2020,45(3):1020−1035.
|
[6] |
黄炳香,张 农,靖洪文,等. 深井采动巷道围岩流变和结构失稳大变形理论[J]. 煤炭学报,2020,45(3):911−926.
HUANG Bingxiang,ZHANG Nong,JING Hongwen,et al. Large deformation theory of rheology and structural instability of the surrounding rock in deep mining roadway[J]. Journal of China Coal Society,2020,45(3):911−926.
|
[7] |
何满潮,徐 敏. HEMS深井降温系统研发及热害控制对策[J]. 岩石力学与工程学报,2008,27(7):1353−1361.
HE Manchao,XU Min. Research and debelopment of HEMS cooling system and heat-harm control in deep mine[J]. Chinese Journal of Rock Mechanics and Engineering,2008,27(7):1353−1361.
|
[8] |
刘 强,高明忠,王 满,等. 千米深井采动工作面矿压显现规律及覆岩位移特征研究[J]. 岩石力学与工程学报,2019,38(S1):3070−3079.
LIU Qiang,GAO Mingzhong,WANG Man,et al. Study on rock pressure behavior law and overburden displacement characteristics of mining face at 1 000 m depth[J]. Chinese Journal of Rock Mechanics and Engineering,2019,38(S1):3070−3079.
|
[9] |
张 驰,兰永伟. 深部开采中软岩巷道的支护形式[J]. 煤炭技术,2007(8):47−49.
ZHANG Chi,LAN Yongwei. Support form of soft rock tunnel in depth portion mining[J]. Coal Technology,2007(8):47−49.
|
[10] |
康红普,王金华,林 健. 煤矿巷道支护技术的研究与应用[J]. 煤炭学报,2010,35(11):1809−1814.
KANG Hongpu,WANG Jinhua,LIN Jian. Study and applications of roadway support techniques for coal mines[J]. Journal of China Coal Society,2010,35(11):1809−1814.
|
[11] |
康红普,王金华,林 健. 高预应力强力支护系统及其在深部巷道中的应用[J]. 煤炭学报,2007,32(12):1233−1238.
KANG Hongpu,WANG Jinhua,LIN Jian. High pretensioned stress and intensive bolting system and its application in deep roadways[J]. Journal of China Coal Society,2007,32(12):1233−1238.
|
[12] |
管学茂,张海波,杨政鹏,等. 高性能无机-有机复合注浆材料研究[J]. 煤炭学报,2020,45(3):902−910.
GUAN Xuemao,ZHANG Haibo,YANG Zhengpeng,et al. Research of high performance inorganic-organic composite grouting materials[J]. Journal of China Coal Society,2020,45(3):902−910.
|
[13] |
张海波,狄红丰,刘庆波,等. 微纳米无机注浆材料研发与应用[J]. 煤炭学报,2020,45(3):949−955.
ZHANG Haibo,DI Hongfeng,LIU Qingbo,et al. Research and application of micro-nano inorganic grouting materials[J]. Journal of China Coal Society,2020,45(3):949−955.
|
[14] |
康红普. 煤矿巷道支护与加固材料的发展及展望[J]. 煤炭科学技术,2021,49(4):1−11.
KANG Hongpu. Development and prospects of support and reinforcement materials for coal mine roadways[J]. Coal Science and Technology,2021,49(4):1−11.
|
[15] |
张耀辉. 双液速凝注浆材料在破碎围岩加固中的应用[J]. 煤矿安全,2016,47(9):155−157.
ZHANG Yaohui. Application of double liquid quick setting grouting material in strengthening of broken surrounding rock[J]. Safety in Coal Mines,2016,47(9):155−157.
|
[16] |
康红普,冯志强. 煤矿巷道围岩注浆加固技术的现状与发展趋势[J]. 煤矿开采,2013,18(3):1−7.
KANG Hongpu,FENG Zhiqiang. Status and development tendency of roadway grouting reinforcement technology in coal mine[J]. Coal Mining Technology,2013,18(3):1−7.
|
[17] |
ZHANG Jianwu,GUAN Xuemao,LI Haiyan,et al. Performance and hydration study of ultra-fine sulfoaluminate cement-based double liquid grouting material[J]. Construction and Building Materials,2017,132:262−270. doi: 10.1016/j.conbuildmat.2016.11.135
|
[18] |
葛大顺,马素花,李伟峰,等. 硫铝酸钙改性硅酸盐水泥应用研究进展[J]. 材料导报,2015,29(11):102−106.
GE Dashun,MA Suhua,LI Weifeng,et al. Research progress in applications of calcium sulphoaluminate modified portland cement[J]. Materials Reports,2015,29(11):102−106.
|
[19] |
孙 倩,管学茂,朱建平. 石膏掺量对CSA水泥早期水化的影响[J]. 材料导报,2013,27(22):315−318.
SUN Qian,GUAN Xuemao,ZHU Jianping. The influence of gypsum content on the early hydration of sulphoaluminate cement pastes[J]. Materials Reports,2013,27(22):315−318.
|
[20] |
李文洲,康红普,姜志云,等. 深部裂隙煤岩体变形破坏机理及高压注浆改性强化试验研究[J]. 煤炭学报,2021,46(3):912−923.
LI Wenzhou,KANG Hongpu,JIANG Zhiyun,et al. Deformation failure mechanism of fractured deep coal-rock mass and high-pressure grouting modification strengthening testing[J]. Journal of China Coal Society,2021,46(3):912−923.
|
[21] |
WANG Kai,WANG Lianguo,REN Bo,et al. Study on Seepage Simulation of High Pressure Grouting in Microfractured Rock Mass[J]. Geofluids,2021,2021:1−12.
|
[22] |
张 农,王保贵,郑西贵,等. 千米深井软岩巷道二次支护中的注浆加固效果分析[J]. 煤炭科学技术,2010,38(5):34−38.
ZHANG Nong,WANG Baogui,ZHENG Xigui,et al. Analysis on grouting reinforcement results in secondary support of soft rock roadway in kilometre deep mine[J]. Coal Science and Technology,2010,38(5):34−38.
|
[23] |
QUILLIN Keith. Performance of belite-sulfoaluminate cements[J]. Cement and Concrete Research,2001,31(9):1341−1349. doi: 10.1016/S0008-8846(01)00543-9
|
[24] |
LIU Hao,WANG Shoude,HUANG Yongbo,et al. Effect of SCMs on the freeze-thaw performance of iron-rich phosphoaluminate cement[J]. Construction and Building Materials,2020,230:117012. doi: 10.1016/j.conbuildmat.2019.117012
|
[25] |
贾会霞,吕淑珍,胡景亮,等. 石膏掺量对高贝利特-硫铝酸盐水泥性能的影响[J]. 武汉理工大学学报,2014,36(1):24−28. doi: 10.3963/j.issn.1671-4431.2014.01.004
JIA Huixia,LU Shuzhen,HU Jingliang,et al. Influence of gypsum on performance of high belite-sulphoaluminate cement[J]. Journal of Wuhan University of Technology,2014,36(1):24−28. doi: 10.3963/j.issn.1671-4431.2014.01.004
|
[26] |
SÁNCHEZ-HERRERO M J,FERNÁNDEZ-JIMÉNEZ A,PALOMO A. C4A3Š hydration in different alkaline media[J]. Cement and Concrete Research,2013,46:41−49. doi: 10.1016/j.cemconres.2013.01.008
|
[27] |
TRAUCHESSEC R,MECHLING J. M,LECOMTE A,et al. Hydration of ordinary Portland cement and calcium sulfoaluminate cement blends[J]. Cement and Concrete Composites,2015,56:106−114. doi: 10.1016/j.cemconcomp.2014.11.005
|
[28] |
杨南如. 机械力化学过程及效应(I)-机械力化学效应[J]. 建筑材料学报,2000,3(1):19−26.
YANG Nanru. Processes and effects of mechanochemistry (I)-Chemical effects of mechanochemistry[J]. Journal of Building Materials,2000,3(1):19−26.
|
[29] |
BJORNSTROM J,MARTINELLI A,MATIC A,et al. Accelerating effects of colloidal nano-silica for beneficial calcium-silicate-hydrate formation in cement[J]. Chemical Physics Letters,2004,392(1-3):242−248. doi: 10.1016/j.cplett.2004.05.071
|
[30] |
KAWASHIMA Shiho,HOU Pengkun,CORR David J,et al. Modification of cement-based materials with nanoparticles[J]. Cement and Concrete Composites,2013,36:8−15. doi: 10.1016/j.cemconcomp.2012.06.012
|
[31] |
韩建国,阎培渝. 碳酸锂对硫铝酸盐水泥水化特性和强度发展的影响[J]. 建筑材料学报,2011,14(1):6−9.
HAN Jianguo,YAN Peiyu. Influence of lithium carbonate on hydration characteristics and strength development of sulphoaluminate cement[J]. Journal of Building Materials,2011,14(1):6−9.
|
[32] |
马保国,梅军鹏,李海南,等. 纳米SiO2对硫铝酸盐水泥水化硬化的影响[J]. 功能材料,2016,47(2):2010−2014. doi: 10.3969/j.issn.1001-9731.2016.02.003
MA Baoguo,MEI Junpeng,LI Hainan,et al. Effect of nano-SiO2 on hydration and hardening of sulphoaluminate cement[J]. Journal of Functional Materials,2016,47(2):2010−2014. doi: 10.3969/j.issn.1001-9731.2016.02.003
|
[33] |
徐 鹏,张轩翰,明高林,等. 纳米改性水泥基材料功能化研究进展[J]. 材料导报,2023(16):1−19.
XU Peng,ZHANG Xuanhan,MING Gaolin,et al. Research progress on functionalized nano-modified cement-based materials[J]. Materials Reports,2023(16):1−19.
|
[34] |
朱建辉,田宇宏. 聚合物改性超细水泥灌浆材料性能研究[J]. 西安建筑科技大学学报(自然科学版),2008,40(6):759−763.
ZHU Jianhui,TIAN Yuhong. Modification of grout of superfine cement by polymer emulsion[J]. Journal of Xi'an University of Architecture & Technology (Natural Science Edition),2008,40(6):759−763.
|
[35] |
杨政鹏,孙钰坤,管学茂,等. 新型加固煤体硅酸盐基无机/有机复合注浆材料的制备及性能[J]. 材料导报,2013,27(8):120−123.
YANG Zhengpeng,SUN Yukun,GUAN Xuemao,et al. Preparation and properties of novel silicate-based inorganic/organic composite grouting material to reinforce coal[J]. Materials Reports,2013,27(8):120−123.
|