REN Xingyun,HAO Bingyuan,LI Xianjun,et al. Research and application of heap spraying technology based on safe and high-efficiency supporting structure[J]. Coal Science and Technology,2023,51(12):254−266
. DOI: 10.13199/j.cnki.cst.2023-0186Citation: |
REN Xingyun,HAO Bingyuan,LI Xianjun,et al. Research and application of heap spraying technology based on safe and high-efficiency supporting structure[J]. Coal Science and Technology,2023,51(12):254−266 . DOI: 10.13199/j.cnki.cst.2023-0186 |
Aiming at the special characteristics of underground coal mine operation environment and the deficiency of existing support technology, heap spraying technology was proposed, technological parameters were determined, heap spraying admixture (S2) was developed, the mechanism of S2 was revealed, and a complete set of heap spraying construction technology was formed and applied to gob-side entry retaining. The results show that: ① Heap spraying technology can be used to construct the supporting structure according to need, which is not restricted by operating space and the operator is far away from the danger zone, so that the surrounding rock can be controlled safely and efficiently. ② Heap spraying material tide mixing and conveying pipeline segmentation with water process, wetting materials in advance, can promote material hydration, enhance adhesion and workability, reduce dust and rebound rate. ③ The accelerating components of S2 include NaAlO2, Al2(SO4)3, NaF, Al(OH)3 and fast-hardening sulfoaluminate cement (SAC-42.5), and the viscosifying and anti-cracking components are silica fume (GS), polymer propylene fiber (JB), S2 improves the compressive strength of the supportintg structure material and has micro-expansion properties. ④ Uniaxial compressive strength of the standard specimens molded by heap spraying is 12.0 MPa at 1 d, 18.0 MPa at 3 d, 27.5 MPa at 7 d, 42.1 MPa at 28 d and 42.3 MPa at 90 d, with high strength supporting capacity, and late strength does not shrink, the strength growth process is divided into three stages: the initial rapid growth stage (age 0−14 d), the medium sustained growth stage (age 14−28 d), and the later stable stage (age>28 d). ⑤Heap spraying technology can build the isolation wall along roadway to realize gob-side entry retaining, having a positive effect on expanding the construction method of supporting structure.
[1] |
2021煤炭行业发展年度报告[R]. 北京:中国煤炭工业协会,2022.
|
[2] |
黄炳香,张 农,靖洪文,等. 深井采动巷道围岩流变和结构失稳大变形理论[J]. 煤炭学报,2020,45(3):911−926.
HUANG Bingxiang,ZHANG Nong,JING Hongwen, et al. Large deformation theory of rheology and structural instability of the surrounding rock in deep mining roadway[J]. Journal of China Coal Society,2020,45(3):911−926.
|
[3] |
白锦文,崔博强,戚庭野,等. 关键柱柱旁充填岩层控制基础理论[J]. 煤炭学报,2021,46(2):424−438.
BAI Jinwen,CUI Boqiang,QI Tingye, et al. Fundamental theory for rock strata control of key pillar-side backfilling[J]. Journal of China Coal Society,2021,46(2):424−438.
|
[4] |
韩昌良,张 农,王晓卿,等. 沿空留巷砌块式墙体结构承载特性及应用研究[J]. 采矿与安全工程学报,2013,30(5):673−678,685.
HANG Changliang,ZHANG Nong,WANG Xiaoqing, et al. Bearing behavior of lock wall structure in gob-side entry retaining and its application[J]. Journal of Mining & Safety Engineering,2013,30(5):673−678,685.
|
[5] |
康红普,张 晓,王东攀,等. 无煤柱开采围岩控制技术及应用[J]. 煤炭学报,2022,47(1):16−44.
KANG Hongpu,ZHANG Xiao,WANG Dongpan, et al. Strata control technology and applications of non-pillar coal mining[J]. Journal of China Coal Society,2022,47(1):16−44.
|
[6] |
姚直书,赵丽霞,程 桦,等. 深厚表土层冻结井筒高强钢筋混凝土内壁设计优化与实测分析[J]. 煤炭学报,2019,44(7):2125−2132.
YAO Zhishu,ZHAO Lixia,CHENG Hua, et al. Research and application of high strength steel fiber concrete compound shaft lining with inner steel plate in deep alluvium shaft repair[J]. Journal of China Coal Society,2019,44(7):2125−2132.
|
[7] |
程 桦,张 楠,姚直书,等. 厚表土井筒修复内套钢板混凝土井壁技术研究[J]. 煤炭科学技术,2019,47(6):58−65.
CHENG Hua,ZHANG Nan,YAO Zhishu, et al. Study on the technology of inner steel plate concrete shaft lining for thick topsoil wellbore repair[J]. Coal Science and Technology,2019,47(6):58−65.
|
[8] |
唐建新,胡 海,涂兴东,等. 普通混凝土巷旁充填沿空留巷试验[J]. 煤炭学报,2010,35(9):1425−1429.
TANG Jianxin,HU Hai,TU Xingdong, et al. Experimental on roadside packing gob-side entry retaining for ordinary concrete[J]. Journal of China Coal Society,2010,35(9):1425−1429.
|
[9] |
DIMITRI Feys,GEERT De Schutter,KAMAL H. Khayat, et al. Changes in rheology of self-consolidating concrete induced by pumping[J]. Materials and Structures,2016,49:4657−4677. doi: 10.1617/s11527-016-0815-7
|
[10] |
马广兴. 柔模混凝土沿空留巷和切顶卸压沿空留巷对比分析[J]. 能源与环保,2018,40(10):185−189.
MA Guangxing. Comparing analysis on gob-side entry retaining for flexible concrete and gob-side entry retaining with roof cutting and pressure releasing[J]. China Energy and Environmental Protection,2018,40(10):185−189.
|
[11] |
ZHANG Feiteng,WANG Xiangyu,BAI Jianbiao, et al. Post-peak mechanical characteristics of the high-water material for backfilling the gob-side entry retaining:from experiment to field application[J]. Arabian Journal of Geosciences,2020,386(13):1−13.
|
[12] |
熊祖强,刘旭锋,王 成,等. 高水巷旁充填材料单轴压缩变形破坏与能耗特征分析[J]. 中国安全生产科学技术,2017,13(1):65−70.
XIONG Zuqiang,LIU Xufeng,WANG Cheng, et al. Analysis on deformation failure and energy consumption characteristics of high-water roadside filling materials under uniaxial compression[J]. Journal of Safety Science and Technology,2017,13(1):65−70.
|
[13] |
李西凡,熊祖强,王 鹏. 高水巷旁充填材料力学性能改进试验研究[J]. 中国安全科学学报,2020,30(5):95−100.
LI Xifan,XIONG Zuqiang,WANG Peng. Experimental study on improvement of mechanical properties of high-water filling materials in gob-side entry retaining[J]. China Safety Science Journal,2020,30(5):95−100.
|
[14] |
任兴云,郝兵元,王宏伟. 矩形巷道顶板锚索布置参数优化研究与实践[J]. 中南大学学报(自然科学版),2021,52(9):3322−3330.
REN Xingyun,HAO Bingyuan,WANG Hongwei. Research and practice on optimization of the layout parameters of roof cable in rectangular roadway[J]. Journal of Central South University (Science and Technology),2021,52(9):3322−3330.
|
[15] |
郝兵元,任兴云,李铁良,等. 一种用于煤矿井下的堆喷混凝土快速筑墙方法[P]. 中国:ZL 201810566315.0,20181116.
|
[16] |
喷射混凝土材料与工程技术及应用-喷射混凝土材料与工程技术分会2020年度行业发展报告(摘编)[J]. 混凝土世界,2021(12):24−29.
|
[17] |
康红普. 煤矿巷道支护与加固材料的发展及展望[J]. 煤炭科学技术,2021,49(4):1−11.
KANG Hongpu. Development and prospects of support and reinforcement materials for coal mine roadways[J]. Coal Science and Technology,2021,49(4):1−11.
|
[18] |
白金超,成云海,郑强强,等. 干、湿喷混凝土受载力学特性及破坏机制[J]. 煤炭学报,2020,45(8):2777−2786.
BAI Jinchao,CHENG Yunhai,ZHENG Qiangqiang, et al. Mechanical characteristics and failure mechanism of dry and wet shotcrete under loading[J]. Journal of China Coal Society,2020,45(8):2777−2786.
|
[19] |
王家滨,牛荻涛,张永利. 喷射混凝土力学性能、渗透性及耐久性试验研究[J]. 土木工程学报,2016,49(5):96−109.
WANG Jiabin,NIU Ditao,ZHANG Yongli. Investigation of mechanical,permeability and durability performance of shotcrete with and without steel fiber[J]. China Civil Engineering Journal,2016,49(5):96−109.
|
[20] |
张荣立,何国纬,李 铎. 采矿工程设计手册[M]. 背景:煤炭工业出版社,2010.
|
[21] |
CHEN Lianjun,LI Pengcheng,LIU Guoming, et al. Development of cement dust suppression technology during shotcrete in mine of China-A review[J]. Journal of Loss Prevention in the Process Industries,2018,55:232−242. doi: 10.1016/j.jlp.2018.07.001
|
[22] |
LINDEMANN H,GERBERS R,IBRAHIM S, et al. Development of a shotcrete 3D-Printing (SC3DP) technology for additive manufacturing of reinforced freeform concrete structures[J]. International Union of Laboratories and Experts in Construction Materials,2019,19:287−298.
|
[23] |
宁逢伟,蔡跃波,白 银,等. 湿喷混凝土射流密实过程研究进展[J]. 人民长江,2021,52(10):208−213.
NING Fengwei,CAI Yuebo,BAI Yin, et al. Research progress of compaction process of wet-sprayshotcrete jet flow[J]. Yangtze River,2021,52(10):208−213.
|
[24] |
颜永弟. 喷射混凝土最佳喷速及一次喷层厚度的理论解[J]. 岩土工程学报,1998,20(4):105−108.
YAN Yongdi. Theoretical solution of optimum jet velocity and layer thickness of once gunited concrete[J]. Chinese Journal of Geotechnical Engineering,1998,20(4):105−108.
|
[25] |
中华人民共和国建设部. 普通混凝土力学性能试验方法标准:GB/T 50081-2002[S]. 北京:中国建筑工业出版社,2002.
|
[26] |
中华人民共和国建设部. 混凝土外加剂应用技术规范:GB 50119-2013[S]. 北京:中国建筑工业出版社,2013.
|
[27] |
KAREN L Scrivener,PATRICK Juilland,PAULO J M Monteiro. Advances in understanding hydration of Portland cement[J]. Cement and Concrete Research,2015,04982:1−19.
|
[28] |
Sara Bahafifid,Siavash Ghabezloo,Myriam Duc, et al. Effect of the hydration temperature on the microstructure of Class G cement:C-S-H composition and density[J]. Cement and Concrete Research,2017,95:270−281. doi: 10.1016/j.cemconres.2017.02.008
|
[29] |
李学彬,曲广龙,杨春满,等. 弱胶结巷道新型聚合物喷层材料及其喷射支护技术研究[J]. 采矿与安全工程学报,2019,36(1):95−102.
LI Xuebin,QU Guanglong,YANG Chunman, et al. Study on new polymer spray-layer material and its spray support technology for weakly cemented rock roadway[J]. Journal of Mining & Safety Engineering,2019,36(1):95−102.
|
[30] |
中华人民共和国住房和城乡建设部. 混凝土强度检验评定标准:GB/T 50107-2010[S]. 北京:中国建筑工业出版社,2010.
|
[31] |
中华人民共和国住房和城乡建设部. 喷射混凝土应用技术规程:JGJ/T 372-2016[S]. 北京:中国建筑工业出版社,2016.
|
[32] |
王方田,尚俊剑,赵 宾,等. 切顶卸压沿空留巷围岩结构特征及锚索强化支护技术[J]. 岩石力学与工程学报,2021,40(11):2296−2305.
WANG Fangtian,SHANG Junjian,ZHAO Bin, et al. Surrounding rock structural characteristics and anchor-cable strengthened support technology of the gob-side entry retaining with roof cutting and pressure releasing[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(11):2296−2305.
|
[33] |
郝兵元,任兴云,李宪军,等. 一种综采放顶煤工作面堆喷混凝土沿空留巷方法[P]. 中国:ZL202111115809.5,20211130.
|
[34] |
谢生荣,张 晴,陈冬冬,等. 沿空留巷顶板非对称锚固深梁承载结构模型研究及应用[J]. 采矿与安全工程学报,2020,37(2):298−310.
XIE Shengrong,ZHANG Qing,CHEN Dongdong, et al. Research and application of asymmetric anchorage deep beam bearing structure model in gob-side entry retaining roof[J]. Journal of Mining & Safety Engineering,2020,37(2):298−310.
|
[35] |
DU Zhaowen,CHEN Shaojie,MA Junbiao, et al. Gob-Side Entry retaining involving bag filling material for support wall construction[J]. Sustainability,2020,12:6353. doi: 10.3390/su12166353
|
[1] | DU Huadong, LIU Yunlong, BI Yinli, SUN Hao, NING Benyan. Spatial-temporal heterogeneity of landscape ecological risk in Yushenfu Mining Area from 1995 to 2021[J]. COAL SCIENCE AND TECHNOLOGY, 2024, 52(6): 270-279. DOI: 10.12438/cst.2023-0762 |
[2] | XIE Xiaoshen, HOU Enke, WANG Shuangming, ZHAO Bingchao, LONG Tianwen, FENG Dong, HOU Pengfei, ZHANG Qi. Syudy on water loss model and prediction technology of aquifer induced by coal mining in Yushenfu Mining Area in the middle reaches of the Yellow River[J]. COAL SCIENCE AND TECHNOLOGY, 2023, 51(12): 197-207. DOI: 10.12438/cst.2023-0860 |
[3] | WANG Chunlei, CHI Mingbo, CUI Dongliang, LI Yu, CAO Zhiguo. Water prevention technology of shallow-buried depth and super large mining height fully-mechanized mining face passing surface channel flow[J]. COAL SCIENCE AND TECHNOLOGY, 2021, 49(11): 142-149. |
[4] | LIU Ji, GAO Min, JIN Dewu, YANG Jian, WANG Qiangmin. Hydrochemical characteristics of surface water and analysis on influence factors in Yushen Mining Area[J]. COAL SCIENCE AND TECHNOLOGY, 2020, 48(7). |
[5] | PENG Jie, LI Cheng, XIANG Maoxi, LI Yonghong, WU Boyun, GAO Shuai, SUN Kui. Influence of coal mining on phreatic aquifer and its environmentaleffects in Yulin-Shenmu-Fugu Area[J]. COAL SCIENCE AND TECHNOLOGY, 2018, (2). |
[6] | Fan Limin wu Boyun Xiang Maoxi Peng Jie Gao Shuai, . Study on protective burnt rock aquifer in water preserved coal mining area of western China[J]. COAL SCIENCE AND TECHNOLOGY, 2016, (8). |
[7] | Zhang Baojian Zhang Ke Gao Zongjun Zhang Fengyu Hao Shuanhu Fan Yao, . Jurassic underground water system in Ordos Basin and mine water prevention and control countermeasures[J]. COAL SCIENCE AND TECHNOLOGY, 2016, (3). |
[8] | Yan Jiaping Cheng Fangkui Gong Chuangang Gu Deming Fan Tingyu Liu Jie Meng Hao Yu Huaijun Zhang Bing, . Plain reservoir construction and water resources protection and utilization of Linhuan Mining Area in . Huaibei[J]. COAL SCIENCE AND TECHNOLOGY, 2015, (8). |
[9] | XU Yan-chun YANG Yang, . New Progress on Floor Grouting Reinforcement Technology of Water Control in Coal Mining Face[J]. COAL SCIENCE AND TECHNOLOGY, 2014, (1). |
[10] | Modern Coal Mining Affected to Underground Water Deposit Environment in West China Mining Area[J]. COAL SCIENCE AND TECHNOLOGY, 2012, (12). |
1. |
张兵, 张梦昭, 梁权宇, 樊勇, 孙伟, 钱涵. 谦比希铜矿涌水水化学特征及防治技术应用. 矿业研究与开发. 2025(07)
![]() | |
2. |
王强. 高河井田井下断层附近地下水突水数值研究. 煤矿现代化. 2025(05)
![]() | |
3. |
任乐,丁启振,周殷竹,周金龙. 吐鲁番市高昌区南部绿洲区低水位期地下水化学变化规律及来源解析. 环境科学. 2025(01): 227-238 .
![]() | |
4. |
曹杰,邢立亭,陈洪年,张飞,邢学韬,刘锁柱,赵洋洋,邓兴,高帅. 陶枣盆地岩溶水水化学特征及劣变机制. 安全与环境工程. 2025(02): 282-294 .
![]() | |
5. |
杨旭,冯蕾,李氡,高晗,徐博. 基于DPSR模型的废弃矿区地质灾害形成特征与安全影响综合评价. 中国锰业. 2025(01): 109-113+122 .
![]() | |
6. |
焦华喆,陈曦,张铁岗,杨柳华,陈新明,HONAKER Rick,马俊伟,余洋. 黄河流域煤炭开发区地下水污染成因分析及防治建议. 中国地质. 2024(01): 143-156 .
![]() | |
7. |
刘伟韬,李蓓蓓,杜衍辉,韩梦珂,赵吉园. 基于改进的SSA-BP神经网络的矿井突水水源识别模型研究. 工矿自动化. 2024(02): 98-105+115 .
![]() | |
8. |
杜华栋,谢姗姗,毕银丽,刘研,孙浩,刘云龙. 半干旱矿区采动地裂缝发育对幼苗库及其建植因子影响. 煤炭科学技术. 2024(02): 350-362 .
![]() | |
9. |
刘晓宏,雷少毅. 榆神矿区面临的水文地质问题及其精细勘查. 陕西煤炭. 2024(06): 106-109+137 .
![]() | |
10. |
华照来,范立民,李增林,孙魁,王路,吕扬,马万超,李强. 古河道砂岩含水层水资源保护与水害防治方法. 绿色矿山. 2024(01): 64-74 .
![]() | |
11. |
孙魁,范立民,马万超,陈建平,彭捷,张鹏华,高帅,李成,苗彦平,王宏科. 鄂尔多斯盆地北部直罗组地下水地球化学特征及其指示意义. 煤炭学报. 2024(04): 2004-2020 .
![]() | |
12. |
李杰,席义苗,曹楠楠,马越. 高强度开采条件下安全回采地质保障技术研究. 煤炭与化工. 2024(05): 43-46+62 .
![]() | |
13. |
梅傲霜,曾一凡,武强,刘志超,苗彦平,王嗣桐,崔雅帅,魏华铭,任帅锋,杨磊. 西部矿区地下水系统水化学过程及其采动激发效应. 煤炭学报. 2024(06): 2769-2784 .
![]() | |
14. |
冯丽敏,李文博,李朗,贺小桐,黄晓燕. 宿迁市地下水水化学特征及水质评价. 地下水. 2024(04): 39-43+154 .
![]() | |
15. |
潘军. 基于Piper-层次聚类-灰色关联度的突水水源识别. 煤炭科学技术. 2024(S1): 221-227 .
![]() | |
16. |
王方田,孙暖,张村,郭中权,窦凤金. 矿井采空区水库水岩作用净水机理研究进展及展望. 绿色矿山. 2024(03): 246-257 .
![]() | |
17. |
华照来,范立民,李增林,王路,吕扬,李小龙. 论《煤矿防治水细则》中的“勘探清楚”问题. 中国煤炭地质. 2024(10): 39-44 .
![]() | |
18. |
王志奇,来永伟. 田庄煤矿岩溶水水地球化学演化模式研究. 煤炭经济研究. 2024(S1): 101-110 .
![]() | |
19. |
郭艳,桂和荣,魏久传,胡满聪,郭祥东,聂锋,陈永青,解建,叶爽,李俊. 区域注浆扰动下渗流场-化学场演化及耦合作用. 煤炭科学技术. 2023(07): 152-166 .
![]() | |
20. |
代彬,郭巧玲,陈梓楹,张肖萌,于荣. 乌兰木伦河流域地下水水化学同位素特征及补给关系. 水资源与水工程学报. 2023(04): 15-22 .
![]() | |
21. |
曾一凡,包函,武强,孟世豪,华照来,苗彦平,张晔,卜文扬. 新近系保德组沉积薄弱区红土阻水性能及其资源开发意义. 煤田地质与勘探. 2023(10): 62-71 .
![]() |