Advance Search

WANG Jiamin,WANG Shouguang,LI Xiangshang,et al. Study on mechanical properties and damage characteristics of granite under thermal shock based on CT scanning[J]. Coal Science and Technology,2023,51(8):58−72

. DOI: 10.13199/j.cnki.cst.2023-0180
Citation:

WANG Jiamin,WANG Shouguang,LI Xiangshang,et al. Study on mechanical properties and damage characteristics of granite under thermal shock based on CT scanning[J]. Coal Science and Technology,2023,51(8):58−72

. DOI: 10.13199/j.cnki.cst.2023-0180

Study on mechanical properties and damage characteristics of granite under thermal shock based on CT scanning

Funds: 

National Natural Science Foundation of China (52204094); China Postdoctoral Science Foundation (2021M701541); General Funding Project for Science and Technology Innovation and Entrepreneurship Fund of China Coal Science and Industry Group Co., Ltd. (2022-MS001)

More Information
  • Received Date: February 15, 2023
  • Available Online: July 11, 2023
  • During the exploitation of deep geothermal resources, the thermal fractures of high-temperature rocks are usually induced by the impact of low-temperature fluids to improve the permeability of reservoir rocks. In order to reveal the damage and fracture mechanism of rock after thermal shock, the granites heated at high temperature (20 ℃, 150 ℃, 300 ℃, 450 ℃, 600 ℃ and 750 ℃) were treated by natural cooling and water cooling respectively, and the wave velocity test, uniaxial compression test and CT scanning were carried out on the treated granites. The mechanical effect of thermal shock on P-wave velocity, compressive strength and elastic modulus of granite were also discussed. The experimental results show that with the increase of heat treatment temperature, the P-wave velocity, compressive strength, and elastic modulus of rock gradually decrease, and the peak strain gradually increases. Compared with natural cooling, the wave velocity and mechanical properties of rock deteriorate more significantly after water cooling. Based on CT scanning, the spatial distribution characteristics of pore and fracture structure of granite under different heating temperatures and heat treatment methods were obtained, which can directly reflect the thermal damage degree of rock microstructure. When the heat treatment temperature is not higher than 450 ℃, the number and size of thermally induced cracks in granite scanning slices are less and the connectivity of cracks is relatively poor. When the temperature exceeds 450 ℃, the micro-cracks in granite develop and expand rapidly, and tend to form fracture network gradually, and the damage and cracking effect of water cooling on the microscomic-structure of granite is more obvious than that of natural cooling. In addition, based on triangular mesh discretization technique, ellipsoid model reconstruction algorithm and fracture tensor calculation theory, the three-dimensional fracture field of granite after thermal shock is quantitatively characterized, and the relationship between fracture fabric tensor and peak strength was established, which further reveals the influence mechanism of granite microscomic-structure on its mechanical properties under thermal shock.

  • [1]
    汪集暘,胡圣标,庞中和,等. 中国大陆干热岩地热资源潜力评估[J]. 科技导报,2012,30(32):25−31. doi: 10.3981/j.issn.1000-7857.2012.32.002

    WANG Jiyang,HU Shengbiao,PANG Zhonghe,et al. Estimate of geothermal resources potential for hot dry rock in the continental area of China[J]. Science and Technology Review,2012,30(32):25−31. doi: 10.3981/j.issn.1000-7857.2012.32.002
    [2]
    王贵玲,刘彦广,朱 喜,等. 中国地热资源现状及发展趋势[J]. 地学前缘,2020,27(1):1−9.

    WANG Guiling,LIU Yanguang,ZHU Xi,et al. The status and development trend of geothermal resources in China[J]. Earth Science Frontiers,2020,27(1):1−9.
    [3]
    郭建春,肖 勇,蒋 恕,等. 深层干热岩水力剪切压裂认识与实践[J]. 地质学报,2021,95(5):1582−1593. doi: 10.3969/j.issn.0001-5717.2021.05.019

    GUO Jianchun,XIAO Yong,JIANG Shu,et al. Understanding and practice of hydraulic shearing in deep hot dry rocks[J]. Acta Geologica Sinica,2021,95(5):1582−1593. doi: 10.3969/j.issn.0001-5717.2021.05.019
    [4]
    WEI Xin,FENG Zijun,ZHAO Yangsheng. Numerical simulation of thermo-hydro-mechanical coupling effect in mining fault-mode hot dry rock geothermal energy[J]. Renewable Energy,2019,139:120−135. doi: 10.1016/j.renene.2019.02.070
    [5]
    邓 潇. 温度交变对干热岩的损伤实验研究[D]. 北京: 中国石油大学(北京), 2017: 32−49.

    DENG Xiao. Experimental study of the influence of cyclic heating-cooling on hot dry rock[D]. Beijing : China University of Petroleum, Beijing, 2017: 32−49.
    [6]
    许天福,张延军,于子望,等. 干热岩水力压裂实验室模拟研究[J]. 科技导报,2015,33(19):35−39. doi: 10.3981/j.issn.1000-7857.2015.19.004

    XU Tianfu,ZHANG Yanjun,YU Ziwang,et al. Laboratory study of hydraulic fracturing on hot dry rock[J]. Science and Technology Review,2015,33(19):35−39. doi: 10.3981/j.issn.1000-7857.2015.19.004
    [7]
    张洪伟,万志军,周长冰,等. 干热岩高温力学特性及热冲击效应分析[J]. 采矿与安全工程学报,2021,38(1):138−145.

    ZHANG Hongwei,WAN Zhijun,ZHOU Changbing,et al. High temperature mechanical properties and thermal shock effect of hot dry rock[J]. Journal of Mining and Safety Engineering,2021,38(1):138−145.
    [8]
    成泽鹏,郤保平,杨欣欣,等. 热冲击作用下花岗岩渗透性演变规律试验研究[J]. 太原理工大学学报,2021,52(2):198−202.

    CHENG Zepeng,XI Baoping,YANG Xinxin,et al. Experimental study on the evolution of granite permeability under thermal shock[J]. Journal of Taiyuan University of Technology,2021,52(2):198−202.
    [9]
    GAO Yanan, WANG Yunlong, LU Taiping, et al. An experimental study on the mechanical properties of high-temperature granite under natural cooling and water cooling[J]. Advances in Materials Science and Engineering, 2021: 9018462.
    [10]
    蔡承政,任科达,杨玉贵,等. 液氮压裂作用下页岩破裂特征试验研究[J]. 岩石力学与工程学报,2020,39(11):2183−2203. doi: 10.13722/j.cnki.jrme.2020.0202

    CAI Chengda,REN Keda,YANG Yugui,et al. Experimental research on shale cracking characteristics due to liquid nitrogen fracturing[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(11):2183−2203. doi: 10.13722/j.cnki.jrme.2020.0202
    [11]
    周 磊,董玉清,朱哲明,等. 高温对花岗岩细观及宏观力学断裂特性的影响[J]. 中南大学学报(自然科学版),2022,53(4):1381−1391.

    ZHOU Lei,DONG Yuqing,ZHU Zheming,et al. Influence of high temperature on micro and macro mechanical fracture characteristics of granite[J]. Journal of Central South University(Science and Technology),2022,53(4):1381−1391.
    [12]
    FAN Lifeng,GAO Jingwei,DU Xiuli,et al. Spatial gradient distributions of thermal shock-induced damage to granite[J]. Journal of Rock Mechanics and Geotechnical Engineering,2020,12(5):917−925. doi: 10.1016/j.jrmge.2020.05.004
    [13]
    金爱兵,王树亮,魏余栋,等. 不同冷却条件对高温砂岩物理力学性质的影响[J]. 岩土力学,2020,41(11):3531−3539.

    JIN Aibing,WANG Shuliang,WEI Yudong,et al. Effect of different cooling conditions on physical and mechanical properties of high-temperature sandstone[J]. Rock and Soil Mechanics,2020,41(11):3531−3539.
    [14]
    SHEN Yanjun,HOU Xin,YUAN Jiangqiang,et al. Thermal deterioration of high-temperature granite after cooling shock: multiple-identification and damage mechanism[J]. Bulletin of Engineering Geology and the Environment,2020,79(10):5385−5398. doi: 10.1007/s10064-020-01888-7
    [15]
    QIN Yan,TIAN Hong,XU Nengxiong,et al. Physical and mechanical properties of granite after high-temperature treatment[J]. Rock Mechanics and Rock Engineering,2020,53:305−322. doi: 10.1007/s00603-019-01919-0
    [16]
    徐小丽,高 峰,张志镇. 高温后围压对花岗岩变形和强度特性的影响[J]. 岩土工程学报,2014,36(11):2246−2252. doi: 10.11779/CJGE201412012

    XU Xiaoli,GAO Feng,ZHANG Zhizhen. Influence of confining pressure on deformation and strength properties of granite after high temperatures[J]. Chinese Journal of Geotechnical Engineering,2014,36(11):2246−2252. doi: 10.11779/CJGE201412012
    [17]
    黄中伟,温海涛,武晓光,等. 液氮冷却作用下高温花岗岩损伤实验[J]. 中国石油大学学报(自然科学版),2019,43(2):68−76.

    HUANG Zhongwei,WEN Haitao,WU Xiaoguang,et al. Experimental study on cracking of high temperature granite using liquid nitrogen[J]. Journal of China University of Petroleum,2019,43(2):68−76.
    [18]
    郤保平,吴阳春,王 帅,等. 青海共和盆地花岗岩高温热损伤力学特性试验研究[J]. 岩石力学与工程学报,2020,39(1):69−83.

    XI Baoping,WU Yangchun,WANG Shuai,et al. Experimental study on mechanical properties of granite taken from Gonghe basin, Qinghai province after high temperature thermal damage[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(1):69−83.
    [19]
    靳佩桦,胡耀青,邵继喜,等. 急剧冷却后花岗岩物理力学及渗透性质试验研究[J]. 岩石力学与工程学报,2018,37(11):2556−2564.

    JIN Peihua,HU Yaoqing,SHAO Jixi,et al. Experimental study on physico-mechanical and transport properties of granite subjected to rapid cooling[J]. Chinese Journal of Rock Mechanics and Engineering,2018,37(11):2556−2564.
    [20]
    王登科,张 平,浦 海,等. 温度冲击下煤体裂隙结构演化的显微CT实验研究[J]. 岩石力学与工程学报,2018,37(10):2243−2252.

    WANG Dengke,ZHANG Ping,PU Hai,et al. Experimental research on cracking process of coal under temperature variation with industrial micro-CT[J]. Chinese Journal of Rock Mechanics and Engineering,2018,37(10):2243−2252.
    [21]
    ZHAO Zhihong,DOU Zihao,XU Haoran,et al. Shear behavior of Beishan granite fractures after thermal treatment[J]. Engineering Fracture Mechanics,2019,213:223−240. doi: 10.1016/j.engfracmech.2019.04.012
    [22]
    韦文术,ZHANG Jeffery,张健恺,等. 煤矿井下水处理反渗透膜的污染机理研究[J]. 煤炭科学技术,2021,49(4):103−110.

    WEI Wenshu,ZHANG Jeffery,ZHANG Jiankai,et al. Study on mechanism of reverse osmosis membrane pollution of water treatment in underground coal mine[J]. Coal Science and Technology,2021,49(4):103−110.
    [23]
    赵阳升, 孟巧荣, 康天合, 等. 显微CT试验技术与花岗岩热破裂特征的细观研究[J]. 岩石力学与工程学报, 2008, 27(1): 28−34.

    ZHAO Yangsheng, MENG Qiaorong, KANG Tianhe, et al. Micro-CT Experimental technology and meso-investigation on thermal fracturing characteristics of granite[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(1): 28−34.
    [24]
    YANG Zhen,YANG Shengqi,TIAN Wenling. Peridynamic simulation of fracture mechanical behaviour of granite specimen under real-time temperature and post-temperature treatments[J]. International Journal of Rock Mechanics and Mining Sciences,2021,138:104573. doi: 10.1016/j.ijrmms.2020.104573
    [25]
    贾 蓬,杨其要,刘冬桥,等. 高温花岗岩水冷却后物理力学特性及微观破裂特征[J]. 岩土力学,2021,42(6):1568−1578.

    JIA Peng,YANG Qiyao,LIU Dongqiao,et al. Physical and mechanical properties and related microscopic characteristics of high-temperature granite after water-cooling[J]. Rock and Soil Mechanics,2021,42(6):1568−1578.
    [26]
    ISAKA B L A,RANJITH P G,RATHNAWEERA T D,et al. Quantification of thermally-induced microcracks in granite using X-ray CT imaging and analysis[J]. Geothermics,2019,81:152−167. doi: 10.1016/j.geothermics.2019.04.007
    [27]
    GOMAH M E,LI Guichen,BADER Salah,et al. Damage evolution of Granodiorite after heating and cooling treatments[J]. Minerals,2021,11(7):779. doi: 10.3390/min11070779
    [28]
    WU Xinghui,GUO Qifeng,ZHU Yu,et al. Pore structure and crack characteristics in high-temperature granite under water-cooling[J]. Case Studies in Thermal Engineering,2021,28:101646. doi: 10.1016/j.csite.2021.101646
    [29]
    邓申缘,姜清辉,商开卫,等. 高温对花岗岩微结构及渗透性演化机制影响分析[J]. 岩土力学,2021,42(6):1601−1611.

    DENG Shenyuan,JIANG Qinghui,SHANG Kaiwei,et al. Effect of high temperature on micro-structure and permeability of granite[J]. Rock and Soil Mechanics,2021,42(6):1601−1611.
    [30]
    蔺文静,陈向阳,甘浩男,等. 东南沿海厦门湾-漳州盆地地热地质特征及干热岩勘查方向[J]. 地质学报,2020,94(7):2066−2077. doi: 10.3969/j.issn.0001-5717.2020.07.014

    LIN Wenjing,CHEN Xiangyang,GAN Haonan,et al. Geothermal, geological characteristics and exploration direction of hot dry rocks in the Xiamen bay-Zhangzhou basin, southeastern China[J]. Acta Geologica Sinica,2020,94(7):2066−2077. doi: 10.3969/j.issn.0001-5717.2020.07.014
    [31]
    滕吉文,司 芗,庄庆祥,等. 漳州盆地精细壳、幔异常结构与潜在干热岩探讨[J]. 地球物理学报,2019,62(5):1613−1632. doi: 10.6038/cjg2019L0595

    TENG Jiwen,SI Xiang,ZHUANG Qingxiang,et al. Fine structures of crust and mantle and potential hot dry rock beneath the Zhangzhou basin[J]. Chinese Journal of Geophysics,2019,62(5):1613−1632. doi: 10.6038/cjg2019L0595
    [32]
    FAN Lifeng,LI Han,XI Yan. Evaluation of the effects of three different cooling methods on the dynamic mechanical properties of thermal-treated sandstone[J]. Bulletin of Engineering Geology and the Environment,2022,81:154. doi: 10.1007/s10064-022-02630-1
    [33]
    KUMAR Susheel,VARMA Atul Kumar,MENDHE Vinod Atmaram,et al. Multi-scale pore characterization of Barakar shale in the Mand-Raigarh Basin, India: scientific upshots from geochemical approaches and imaging techniques[J]. Arabian Journal of Geosciences,2021,14:2188. doi: 10.1007/s12517-021-08585-z
    [34]
    毛伟泽,吕 庆,郑 俊,等. 基于CT图像的花岗岩矿物组分与细观结构分析[J]. 工程地质学报,2022,30(1):216−222.

    MAO Weize,LYU Qing,ZHENG Jun,et al. Analysis of mineral composition and meso-structure of granite using CT images[J]. Journal of Engineering Geology,2022,30(1):216−222.
    [35]
    王守光,穆鹏宇,王嘉敏,等. CT扫描的煤岩面裂隙椭球模型重构与张量表征及其应用[J]. 煤炭学报,2022,47(7):2593−2608.

    WANG Shouguang,MU Pengyu,WANG Jiamin,et al. Ellipsoid reconstruction and tensor characterization of planar fractures in coal obtained by CT-scanning and the applications[J]. Journal of China Coal Society,2022,47(7):2593−2608.
    [36]
    ZHU Zhennan,KEMPKA Thomas,RANJITH Pathegama Gamage,et al. Changes in thermomechanical properties due to air and water cooling of hot dry granite rocks under unconfined compression[J]. Renewable Energy,2021,170:562−573. doi: 10.1016/j.renene.2021.02.019
    [37]
    闫国亮,孙建孟,刘学锋,等. 储层岩石微观孔隙结构特征及其对渗透率影响[J]. 测井技术,2014,38(1):28−32.

    YAN Guoliang,SUN Jianmeng,LIU Xuefeng,et al. Characterization of microscopic pore structure of reservior rock and its effect on permeability[J]. Well Logging Technology,2014,38(1):28−32.
    [38]
    ODA M. A method for evaluating the effect of crack geometry on the mechanical behavior of cracked rock masses[J]. Mechanics of Materials,1983,2(2):163−171. doi: 10.1016/0167-6636(83)90035-2
    [39]
    YANG Qiang,CHEN Xin,ZHOU Weiyuan. Effective stress and vector-valued orientational distribution functions[J]. International Journal of Damage Mechanics,2008,17:101−121. doi: 10.1177/1056789506067938
  • Related Articles

    [1]ZHU Chuanqi, WANG Lei, CHEN Lipeng, ZHANG Yu, WANG Ancheng. Wave velocity evolution and fracture distribution of soft coal under uniaxial compression[J]. COAL SCIENCE AND TECHNOLOGY, 2024, 52(4): 288-301. DOI: 10.12438/cst.2023-1388
    [2]LEI Guorong, LI Chunyuan, QI Qingxin, WANG Jiamin, DU Weisheng, LI Xiangshang, HE Tuan. Ultrasonic and CT scanning analysis of coal-rock mass under the primary bedding structure[J]. COAL SCIENCE AND TECHNOLOGY, 2024, 52(3): 74-86. DOI: 10.13199/j.cnki.cst.2023-0314
    [3]HU Shanchao, HAN Jinming, HUANG Junhong, PING Lifen, CHENG Yafei, GAO Zhihao, GUO Shihao, YANG Lei. Study on meso-fracture and energy evolution law of rock under sleeve fracturing[J]. COAL SCIENCE AND TECHNOLOGY, 2024, 52(2): 79-91. DOI: 10.12438/cst.2023-1438
    [4]ZHANG Liang, QI Qingxin, REN Ting, LI Xiangchun, GAO Ke, LI Chunyuan, LI Xiaopeng, YUAN Honghui. Study on the damage and fracture characteristics of coal rock based on the X-ray micro-CT scanning technology and statistical strength theory[J]. COAL SCIENCE AND TECHNOLOGY, 2023, 51(S2): 1-12. DOI: 10.13199/j.cnki.cst.2022-2185
    [5]WANG Jiachang, KANG Jianting, KANG Tianhe, ZHENG Yawei, YAN Jiaxin, ZHANG Huihui, LIANG Xiaomin. Evolutionary characteristics of sandstone pore-fracture structure under the action of high and low temperature cyclic impact[J]. COAL SCIENCE AND TECHNOLOGY, 2023, 51(11): 139-147. DOI: 10.13199/j.cnki.cst.2022-1774
    [6]FENG Xuejian, SHEN Yongxing, ZHOU Dong, WANG Jinxin, WANG Menglu. Multi-scale distribution of coal fractures based on CT digital core deep learning[J]. COAL SCIENCE AND TECHNOLOGY, 2023, 51(8): 97-104. DOI: 10.13199/j.cnki.cst.2022-0530
    [7]YANG Qi, YU Yanbin, CUI Wenting, GAO Chengwei, ZHANG Xin, SHEN Jialong. Fracture evolution of coal under uniaxial compression based on X-ray microscopic imaging[J]. COAL SCIENCE AND TECHNOLOGY, 2023, 51(4): 88-95. DOI: 10.13199/j.cnki.cst.2021-0766
    [8]MO Yunlong, LI Hongyan, SUN Zhongxue, LI Lei, WANG Jianda. Analysis on effect of primary fractures structure on physical and mechanical properties of coal rock[J]. COAL SCIENCE AND TECHNOLOGY, 2020, 48(5).
    [9]GONG Weili, WU Xiaodong, ZHANG Zixiang, ZHAO Haiyan. Study on microscopic damage features of coal-rock based on CT scanning[J]. COAL SCIENCE AND TECHNOLOGY, 2018, (9).
    [10]Wang Qiao Zhao Dong Feng Zengchao Zhou Dong Zhang Chao, . Experimental study on fracturing of coal by injection liquid nitrogen in drill based on CT scanning[J]. COAL SCIENCE AND TECHNOLOGY, 2017, (4).

Catalog

    Article views (189) PDF downloads (63) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return