Advance Search

WANG Dengke,PANG Xiaofei,WEI Jianping,et al. Effect of gas properties and pore pressure on the microcrack propagation in coal[J]. Coal Science and Technology,2023,51(2):183−192

. DOI: 10.13199/j.cnki.cst.2022–1417
Citation:

WANG Dengke,PANG Xiaofei,WEI Jianping,et al. Effect of gas properties and pore pressure on the microcrack propagation in coal[J]. Coal Science and Technology,2023,51(2):183−192

. DOI: 10.13199/j.cnki.cst.2022–1417

Effect of gas properties and pore pressure on the microcrack propagation in coal

Funds: 

National Natural Science Foundation of China (52174174); Basic Research Project of Key Scientific Research Projects of Colleges and Universities of Henan Province (21zx004); Henan Polytechnic University Innovative Research Team Project (T2022-1)

More Information
  • Received Date: October 09, 2022
  • Available Online: April 20, 2023
  • Using an industrial CT scanning system, we observed the characteristics of micro-fracture Generation and expansion in coal under different gas pressure conditions, providing a new basis for revealing the factors controlling the gas flow output of coal seams. The results of the test analysis showed that: under the action of non-adsorbed gas, the growth rate of fracture volume and fracture area percentage decreases gradually as the pore pressure increases and the sprouting and expansion of microfractures inside coal becomes more obvious. Fracture expansion equation under the influence of pore pressure is satisfied; microfracture extension is mainly controlled by stress concentration effect and coal matrix shrinkage effect. Under the action of adsorptive gas, with the extension of adsorption time, generation and expansion in coal of micro fissures become more and more significant until the expansion equilibrium; the growth rate of fissure volume and fissure area percentage then gradually becomes smaller, in line with the fissure expansion equation under the influence of adsorption time; the fracture extension is mainly affected by stress concentration effect, coal matrix shrinkage effect, erosion effect and deterioration mechanism. The larger the adsorption pressure the longer the adsorption equilibrium time required for the coal; the micro fissure expansion equilibrium time is longer than the gas adsorption equilibrium time, and the fissure expansion has obvious hysteresis.

  • [1]
    聂百胜,段三明. 煤吸附瓦斯的本质[J]. 太原理工大学学报,1998,29(4):88−92.

    NIE Baisheng,DUAN Sanming. The nature of coal adsorption gas[J]. Journal of Taiyuan University of Technology,1998,29(4):88−92.
    [2]
    张 力,何学秋,聂百胜. 煤吸附瓦斯过程的研究[J]. 矿业安全与环保,2000,27(6):1−2. doi: 10.3969/j.issn.1008-4495.2000.06.001

    ZHANG Li,HE Xueqiu,NIE Baisheng. Study of the coal adsorption gas process[J]. Mining Safety & Environmental Protection,2000,27(6):1−2. doi: 10.3969/j.issn.1008-4495.2000.06.001
    [3]
    王登科,张 航,魏建平,等. 基于工业CT扫描的瓦斯压力影响下含瓦斯煤裂隙动态演化特征[J]. 煤炭学报,2021,46(11):3550−3564.

    WANG Dengke,ZHANG Hang,WEI Jianping,et al. Dynamic evolution characteristics of fractures in gas bearing coal under the influence of gas pressure using industrial CT scanning technology[J]. Journal of China Coal Society,2021,46(11):3550−3564.
    [4]
    王春光,王长盛,陶志刚,等. 气体运移导致煤体结构变形演化特征研究−以注入氦气为例[J]. 岩土力学,2015,36(12):3439−3446.

    WANG Chunguang,WANG Changsheng,TAO Zhigang,et al. Structure deformation of coal induced by gas migration – a case of injecting helium gas into intact coal[J]. Rock and Soil Mechanics,2015,36(12):3439−3446.
    [5]
    KARACAN CO. Heterogeneous sorption and swelling in a confined and stressed coal during CO2 injection[J]. Energy and Fuels,2003,17(6):1595−1608. doi: 10.1021/ef0301349
    [6]
    KARACAN CO. Swelling-induced volumetric strains internal to a stressed coal associated with CO2 sorption[J]. International Journal of Coal Geology,2007,72(3/4):209−220.
    [7]
    XIE Guangxiang,YIN Zhiqiang,WANG Lei,et al. Effect of gas pressure on the failure characteristics of coal[J]. Rock Mechanics and Rock Engineering,2017,50(7):1711−1723. doi: 10.1007/s00603-017-1194-2
    [8]
    徐佑林,吴旭坤. 瓦斯压力对煤体吸附特性及结构影响实验研究[J]. 煤矿安全,2019,50(8):1−4,9.

    XU Youlin,WU Xukun. Experimental study on influence of gas pressure on adsorption characteristics and structure of coal[J]. Safety in Coal Mines,2019,50(8):1−4,9.
    [9]
    汪斌斌. 底板穿层钻孔爆破煤层增透裂隙分布规律研究与应用[D]. 淮南: 安徽理工大学, 2017.

    WANG Binbin. Research and application of fracture distribution law of coal seam permeability improvement technology by blasting through floor cross-measure boreholes[D]. Huainan: Anhui University of Science and Technology, 2017.
    [10]
    周世宁, 林柏泉. 煤层瓦斯赋存与流动理论[M]. 北京: 煤炭工业出版社, 1999.

    ZHOU Shining, LIN Baiquan. The theory of gas flow and storage in coal seams[M]. Beijing: China Coal Industry Publishing House, 1999.
    [11]
    桑树勋,朱炎铭,张时音,等. 煤吸附气体的固气作用机理(Ⅰ)−煤孔隙结构与固气作用[J]. 天然气工业,2005(1):13−15.

    SANG Shuxun,ZHU Yanming,ZHANG Shiyin,et al. Solid-gas interaction mechanism of coal-adsorbed gas--coal pore structure and solid-gas interaction[J]. Natural Gas Industry,2005(1):13−15.
    [12]
    桑树勋,朱炎铭,张 井,等. 煤吸附气体的固气作用机理(Ⅱ)−煤吸附气体的物理过程与理论模型[J]. 天然气工业,2005(1):16−18.

    SANG Shuxun,ZHU Yanming,ZHANG Jing,et al. Solid-gas interaction mechanism of coal-adsorbed gas(ii)-physical process and theoretical model of coal-adsorbed gas[J]. Natural Gas Industry,2005(1):16−18.
    [13]
    曹树刚,张遵国,李 毅,等. 突出危险煤吸附、解吸瓦斯变形特性试验研究[J]. 煤炭学报,2013,38(10):1792−1799.

    CAO Shugang,ZHANG Zunguo,LI Yi,et al. Experimental study of deformation properties of outburst- prone coal induced by gas adsorption and desorption[J]. Journal of China Coal Society,2013,38(10):1792−1799.
    [14]
    王 磊,刘怀谦,谢广祥,等. 含瓦斯煤孔裂隙结构精细表征及强度劣化机制[J]. 岩土力学,2021,42(12):3203−3216.

    WANG Lei,LIU Huaiqian,XIE Guangxiang,et al. Fine characterization of the pore and fracture structure and strength degradation mechanism of gas bearing coal[J]. Rock and Soil Mechanics,2021,42(12):3203−3216.
    [15]
    胡国忠,许家林,王宏图,等. 低渗透煤与瓦斯的固–气动态耦合模型及数值模拟[J]. 中国矿业大学学报,2011,40(1):1−6.

    HU Guozhong,XU Jialin,WANG Hongtu,et al. Research on a dynamically coupled deformation and gas flow model applied to low-permeability coal[J]. Journal of China University of Mining & Technology,2011,40(1):1−6.
    [16]
    刘 鹏,赵阳升,冯子军. 孔隙压和吸附引起煤体变形规律的试验研究[J]. 煤矿安全,2019,50(10):5−8.

    LIU Peng,ZHANG Yangsheng,FENG Zijun. Experimental study on deformation law of coal body caused by pore pressure and adsorption[J]. Safety in Coal Mines,2019,50(10):5−8.
    [17]
    朱双江. 瓦斯对煤超声纵波速度的影响机制及其验证[D]. 徐州: 中国矿业大学, 2021.

    ZHU Shuangjiang. Effect mechanism of gas on ultrasonic P-wave velocity of coal and it’s verification[D]. Xuzhou: China University of Mining and Technology, 2021.
    [18]
    WANG Dengke,ZENG Fanchao,WEI Janping,et al. Quantitative analysis of fracture dynamic evolution in coal subjected to uniaxial and triaxial compression loads based on industrial CT and fractal theory[J]. Journal of Petroleum Science and Engineering,2020,196:108051.
    [19]
    郭印同,杨春和,贾长贵,等. 页岩水力压裂物理模拟与裂缝表征方法研究[J]. 岩石力学与工程学报,2014,33(1):52−59.

    GUO Yintong,YANG Chunhe,JIA Changgui,et al. Research on hydraulic fracturing physical simulation of shale and fracture characterization[J]. Chinese Journal of Rock Mechanics and Engineering,2014,33(1):52−59.
    [20]
    彭守建,吴 斌,许 江,等. 基于CGAL的岩石裂隙面三维重构方法研究[J]. 岩石力学与工程学报,2020,39(S2):3450−3463.

    PENG Shoujian,WU Bin,XU Jiang,et al. Research on 3D reconstruction method of rock fracture surface based on CGAL[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(S2):3450−3463.
    [21]
    WU Yan,WANG Dengke,WANG Lei,et al. An analysis of the meso-structural damage evolution of coal using X-ray CT and a gray-scale level co-occurrence matrix method[J]. International Journal of Rock Mechanics and Mining Sciences,2022,152:105062. doi: 10.1016/j.ijrmms.2022.105062
    [22]
    WU Yan,WANG Dengke,WEI Jianping,et al. Damage constitutive model of gas-bearing coal using industrial CT scanning technology[J]. Journal of Natural Gas Science and Engineering,2022,101:104543. doi: 10.1016/j.jngse.2022.104543
    [23]
    YAO Y,LIU D,CHE Y,et al. Non-destructive characterization of coal samples from China using microfocus X-ray computed tomography[J]. International Journal of Coal Geology,2009,80(2):113−123. doi: 10.1016/j.coal.2009.08.001
    [24]
    HAN F,BUSCH A,KROOSS B M,et al. Experimental study on fluid transport processes in the cleat and matrix systems of coal[J]. Energy Fuels,2010,24(12):6653−6661. doi: 10.1021/ef100165w
    [25]
    HAN F,BUSCH A,VAN W N,et al. Experimental study of gas and water transport processes in the inter-cleat(matrix) system of coal: Anthracite from Qinshui Basin, China[J]. International Journal of Coal Geology,2010,81(2):128−138.
    [26]
    彭瑞东,杨彦从,鞠 杨,等. 基于灰度CT图像的岩石孔隙分形维数计算[J]. 科学通,2011,56(26):2256−2266.

    PENG Ruidong,YANG Yancong,JU Yang,et al. Computation of fractal dimension of rock pores based on gray CT images[J]. Chinese Science Bulletin,2011,56(26):2256−2266.
    [27]
    WANG G,SHEN J,LIU S,et al. Three-dimensional modeling and analysis of macro-pore structure of coal using combined X-ray CT imaging and fractal theory[J]. International Journal of Rock Mechanics and Mining Sciences,2019,123:104−114.
    [28]
    王 刚,沈俊男,褚翔宇,等. 基于CT三维重建的高阶煤孔裂隙结构综合表征和分析[J]. 煤炭学报,2017,42(8):2074−2080.

    WANG Gang,SHEN Junnan,CHU Xiangyu,et al. Characteristics and analysis of pores and fissures of high-rank coal based on CT three-dimensional reconstruction[J]. Journal of China Coal Society,2017,42(8):2074−2080.
    [29]
    王登科,张 平,浦 海,等. 温度冲击下煤体裂隙结构演化的显微 CT 实验研究[J]. 岩石力学与工程学报,2018,37(10):2243−2252.

    WANG Dengke,ZHANG Ping,PU Hai,et al. Experimental research on cracking process of coal under temperature variation with industrial micro-CT[J]. Chinese Journal of Rock Mechanics and Engineering,2018,37(10):2243−2252.
    [30]
    王登科,曾凡超,王建国,等. 显微工业 CT 的受载煤样裂隙动态演化特征与分形规律研究[J]. 岩石力学与工程学报,2020,39(6):1165−1174.

    WANG Dengke,ZENG Fanchao,WANG Jianguo,et al. Dynamic evolution characteristics and fractal law of loaded coal fractures by micro industrial CT[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(6):1165−1174.
    [31]
    WU Yan,WANG Dengke,WANG Lei,et al. An analysis of the meso-structural damage evolution of coal using X-ray CT and a gray-scale level co-occurrence matrix method[J]. International Journal of Rock Mechanics and Mining Sciences,2022,152:105062.
    [32]
    王 羽,汪丽华,王建强,等. 利用纳米透射X射线显微成像技术研究页岩有机孔三维结构特征[J]. 岩矿测试,2017,36(6):563−573.

    WANG Yu,WANG Lihua,WANG Jianqiang,et al. Investigation of organic matter pore structures of shale of shale in three dimensions of shale using nano-X-ray microscopy[J]. Rock and Mineral Analysis,2017,36(6):563−573.
    [33]
    王 羽,汪丽华,王建强,等. 利用微米X射线显微镜研究陆相延长组页岩孔隙结构特征[J]. 岩矿测试,2020,39(4):566−577.

    WANG Yu,WANG Lihua,WANG Jianqiang,et al. Investigation on pore structures of Yancheng formation shale using micro X-ray microscopy[J]. Rock and Mineral Analysis,2020,39(4):566−577.
    [34]
    宫伟力,安里千,赵海燕,等. 基于图像描述的煤岩裂隙CT图像多尺度特征[J]. 岩土力学,2010,31(2):371−376,381. doi: 10.3969/j.issn.1000-7598.2010.02.007

    GONG Weili,AN Liqian,ZHAO Haiyan,et al. Multiple scale characterization of CT image for coal rock fractures based on image description[J]. Rock and Soil Mechanics,2010,31(2):371−376,381. doi: 10.3969/j.issn.1000-7598.2010.02.007
    [35]
    何学秋. 含瓦斯煤岩流变动力学[M]. 徐州: 中国矿业大学出版社, 1995.

    HE Xueqiu. Rheological dynamics of coal rock containing gas[M]. Xuzhou: China University of Mining and Technology Press, 1995.
    [36]
    宋大钊,王恩元,赵恩来,等. 煤体充放瓦斯连续循环过程声发射特性研究[J]. 煤炭科学技术,2009,37(11):14−17.

    SONG Dazhao,WANG Enyuan,ZHAO Enlai,et al. Study on acoustic emission characteristic of coal during the process of successive cycles of gas inflation-deflation[J]. Coal Science and Technology,2009,37(11):14−17.
    [37]
    李清川,王汉鹏,袁 亮,等. 吸附气体量对煤岩力学特性损伤劣化的试验研究[J]. 中国矿业大学学报,2019,48(5):955−965.

    LI Qingchuan,WANG Hanpeng,YUAN Liang,et al. Experimental study of damage and degradation of coal by adsorbed amount[J]. Journal of China University of Mining and Technology,2019,48(5):955−965.
    [38]
    张庆贺,杨 科,袁 亮,等. 吸附性气体对构造煤的损伤效应试验研究[J]. 采矿与安全工程学报,2019,36(5):995−1001.

    ZHANG Qinghe,YANG Ke,YUAN Liang,et al. Experimental study on damage effect of adsorbed gas on structural coal[J]. Journal of Mining & Safety Engineering,2019,36(5):995−1001.
    [39]
    钱鸣高, 石平五, 许家林. 矿山压力与岩层控制[M]. 徐州: 中国矿业大学出版社, 2010.

    QIAN Minggao, SHI Pingwu, XU Jialin. Mine pressure and rock control[M]. Xuzhou: China University of Mining and Technology Press, 2010.
    [40]
    李世愚, 和泰名, 尹祥础. 岩石断裂力学[M]. 北京: 科学出版社, 2021.

    LI Shiyu, HE Taiming, YIN Xiangchu. Fracture mechanics of rocks[M]. Beijing: Science Press, 2021.
    [41]
    何学秋,王恩元,林海燕. 孔隙气体对煤体变形及蚀损作用机理[J]. 中国矿业大学学报,1996(1):6−11.

    HE Xueqiu,WANG Enyuan,LIN Haiyan. Mechanism of deformation and erosion of coal body by pore gas[J]. Journal of China University of Mining and Technology,1996(1):6−11.
    [42]
    聂百胜,何学秋,王恩元. 煤的表面自由能及应用探讨[J]. 太原理工大学学报,2000(4):346−348. doi: 10.3969/j.issn.1007-9432.2000.04.002

    NIE Baisheng,HE Xueqiu,WANG Enyuan. Surface free energy of coal and its application[J]. Journal of Taiyuan University of Technology,2000(4):346−348. doi: 10.3969/j.issn.1007-9432.2000.04.002
    [43]
    刘延保,曹树刚,李 勇,等. 煤体吸附瓦斯膨胀变形效应的试验研究[J]. 岩石力学与工程学报,2010,29(12):2484−2491.

    LIU Yanbao,CAO Shugang,LI Yong,et al. Experimental study of swelling deformation effect of coal induced by gas adsorption[J]. Chinese Journal of Rock Mechanics and Engineering,2010,29(12):2484−2491.
  • Cited by

    Periodical cited type(15)

    1. 康智. 工作面高抽巷掘进技术研究与应用. 山西化工. 2024(02): 186-187+194 .
    2. 张国华,柳杨,李子波,李豫波,荆珂. 高位钻孔瓦斯抽采参数的优化. 黑龙江科技大学学报. 2024(02): 163-170+187 .
    3. 倪廉钦,李忠备,高杰,付光胜,张晓玉,袁安营. 近距离薄煤层群首采层卸压瓦斯协同抽采技术研究. 中国安全生产科学技术. 2024(04): 70-77 .
    4. 宁文伟. U型通风工作面瓦斯分布与治理研究. 山东煤炭科技. 2024(04): 93-98 .
    5. 郭世斌,胡国忠,朱家锌,许家林,秦伟,杨南. 顶板瓦斯抽采巷布置位置智能预测方法. 煤炭科学技术. 2024(04): 203-213 . 本站查看
    6. 秦伟. 王坪煤业高抽巷瓦斯抽采参数优化与应用研究. 山西煤炭. 2024(02): 98-104 .
    7. 赵晓坤,王家宁,王宏伟,倪铭昊. 高抽巷治理采空区瓦斯的数值模拟研究. 山西大同大学学报(自然科学版). 2024(03): 108-111 .
    8. 姜延航,周露函,韩明旭,王丽新. 一面四巷瓦斯抽采对采空区遗煤自燃影响数值模拟研究. 煤炭科学技术. 2024(S1): 62-69 . 本站查看
    9. 李常厚,王瑞超. 锦源煤矿瓦斯防治技术研究. 煤矿现代化. 2023(01): 44-48+53 .
    10. 张泽宇,谯永刚,李豪君,雒铜童,郭强,李亮红. 沿空留巷U型通风瓦斯时空分布及治理研究. 煤矿安全. 2023(04): 51-59 .
    11. 范尚崇,杨宏民,邱向雷,尹海. 高抽巷合理层位的确定方法与应用. 河南理工大学学报(自然科学版). 2022(02): 26-31 .
    12. 赵学良,贾航,罗华贵. 赵庄煤矿工作面分源联合立体抽采技术应用研究. 煤炭工程. 2022(01): 74-79 .
    13. 孙淼,李辉,李鑫林,韩星. 邻近工作面影响下高抽巷合理位置研究. 内蒙古煤炭经济. 2022(01): 33-35 .
    14. 汪腾蛟,聂朝刚,杨小彬,王朋浩. 考虑温度变化的采空区瓦斯抽采数值模拟. 煤炭科学技术. 2021(07): 85-94 . 本站查看
    15. 田臣,李斌. 神东矿区特大采高超长走向多煤层开采内因火灾预防技术. 煤炭科学技术. 2021(S2): 183-189 . 本站查看

    Other cited types(11)

Catalog

    Article views (85) PDF downloads (48) Cited by(26)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return