Advance Search
DENG Jun,ZHOU Jiamin,BAI Zujin,et al. Effect of gas on microstructure and thermal reactivity of coal during low temperature oxidation[J]. Coal Science and Technology,2023,51(1):304−312. DOI: 10.13199/j.cnki.cst.2022–0119
Citation: DENG Jun,ZHOU Jiamin,BAI Zujin,et al. Effect of gas on microstructure and thermal reactivity of coal during low temperature oxidation[J]. Coal Science and Technology,2023,51(1):304−312. DOI: 10.13199/j.cnki.cst.2022–0119

Effect of gas on microstructure and thermal reactivity of coal during low temperature oxidation

Funds: 

National Natural Science Foundation of China (52074215)

More Information
  • Received Date: October 24, 2022
  • Available Online: March 08, 2023
  • In order to investigate the microscopic physicochemical properties and macroscopic coal-oxygen complex thermal effects in the low-temperature oxidation of coal under gas atmosphere, different metamorphic coal and secondary oxidized coal samples as research objects were selected in this paper. Fourier infrared spectrometer and C80 microcalorimeter were employed to study the changes of physicochemical structural properties, kinetic parameters and thermal effects in the low-temperature oxidation of coal under different gas atmospheres. By analysing the microstructure and macroscopic exothermic characteristics of different gas content during coal spontaneous oxidation, the ultimate influence of gas on the oxidation characteristics of coal was clarified. The results show that gas delays the low-temperature oxidation process of coal by inhibiting the relative content of key active groups in the low-temperature oxidation process of coal. 4% gas has the most obvious inhibitory effect. The degree of inhibition on the four active groups is: oxygen-containing functional groups (66.5%) > Aromatic hydrocarbons (47.0%) > Aliphatic hydrocarbons (29.7%) > Hydroxyl (24.7%). In the rapid exothermic stage, due to the large adsorption capacity of coal to gas molecules, gas occupies the adsorption sites in coal molecules, which hinders the process of coal-oxygen recombination reaction, resulting in the exothermic effect being suppressed by gas; at the same time, gas content significantly affects coal oxygen. The amount of activation energy required for the recombination process. For high metamorphic non-stick coal, lean coal and anthracite, gas has a more significant inhibitory effect on its low temperature oxidation reaction; it has less effect on low metamorphic long flame coal. For secondary oxidized coal samples, the inhibitory effect of gas on coal samples increases with the increase of gas content, while the effect of gas on primary oxidized coal samples decreases as the degree of metamorphism decreases, and the degree of inhibition when the gas content is 2% is stronger than 4%. The results of the work have great significance to the theoretical study of the prevention and control of the coupling of gas and coal spontaneous combustion causing accidents.

  • [1]
    CHEN X,LI L,WANG L,et al. The current situation and prevention and control countermeasures for typical dynamic disasters in kilometer-deep mines in China[J]. Safety Science,2019,115:229−236. doi: 10.1016/j.ssci.2019.02.010
    [2]
    ZHANG Q,YAO B Y,LI Y H,et al. Research progress and prospect on the monitoring and early warning and mitigation technology of meteorological drought disaster in northwest China[J]. Advances in Earth Science,2015,30(2):196.
    [3]
    WANG H Y,CHENG C F,CHENG C. Characteristics of polycyclic aromatic hydrocarbon release during spontaneous combustion of coal and gangue in the same coal seam[J]. Journal of Loss Prevention in the Process Industries,2018,55:392−399. doi: 10.1016/j.jlp.2018.07.004
    [4]
    WANG C J,YANG S Q,LI X W. Simulation of the hazard arising from the coupling of gas explosions and spontaneously combustible coal due to the gas drainage of a gob[J]. Process Safety and Environmental Protection,2018,118:296−306. doi: 10.1016/j.psep.2018.06.028
    [5]
    王德明,邵振鲁,朱云飞. 煤矿热动力重大灾害中的几个科学问题[J]. 煤炭学报,2021,46(1):57−64.

    WANG Deming,SHAO Zhenlu,ZHU Yunfei,et al. Several scientific issues in major thermal disasters in coal mines[J]. Journal of China Coal Society,2021,46(1):57−64.
    [6]
    ZHENG Y N,LI Q Z,ZHU P F,et al. Study on multi-field evolution and influencing factors of coal spontaneous combustion in goaf[J]. Combustion Science and Technology,2021,195(2):247−264.
    [7]
    TANG Z Q,YANG S Q,XU G,et al. Disaster-causing mechanism and risk area classification method for composite disasters of gas explosion and coal spontaneous combustion in deep coal mining with narrow coal pillars[J]. Process Safety and Environmental Protection,2019,132:182−188. doi: 10.1016/j.psep.2019.09.036
    [8]
    林柏泉,李庆钊,周 延. 煤矿采空区瓦斯与煤自燃复合热动力灾害多场演化研究进展[J]. 煤炭学报,2021,46(6):1715−1726.

    LIN Baiquan,LI Qinzhao,ZHOU Yan. Research progress on multi-field evolution of combined thermal and dynamic disasters of gas and coal spontaneous combustion in coal mine goaf[J]. Journal of China Coal Society,2021,46(6):1715−1726.
    [9]
    WANG G,XIE J,XUE S. Laboratory study on low-temperature coal spontaneous combustion in the air of reduced oxygen and low methane concentration[J]. Technical Gazette,2015,22(5):1319−1325.
    [10]
    邓 军,李 鹏,程文东,等. 瓦斯对煤自燃特性参数影响的实验研究[J]. 煤矿安全,2014,45(11):31−33.

    DENG Jun,LI Peng,CHENG Wendong,et al. Experimental study on the influence of gas on coal spontaneous combustion characteristic parameters[J]. Safety in Coal Mines,2014,45(11):31−33.
    [11]
    WANG H Y,TIAN Y,LI J L,et al. Experimental study on thermal effect and gas release laws of coal-polyurethane cooperative spontaneous combustion[J]. Scientific Reports,2021,11(1):1−13. doi: 10.1038/s41598-020-79139-8
    [12]
    ZHOU F,LIU S,PANG Y,et al. Effects of coal functional groups on adsorption microheat of coal bed methane[J]. Energy & Fuels,2015,29(3):1550−1557.
    [13]
    HU Y,WANG S,HE Y. Investigation of the coal oxidation effect on competitive adsorption characteristics of CO2/CH4[J]. Energy & Fuels,2020,34(10):12860−12869.
    [14]
    TANG Y,WANG H. Experimental investigation on microstructure evolution and spontaneous combustion properties of secondary oxidation of lignite[J]. Process Safety and Environmental Protection,2019,124:143−150. doi: 10.1016/j.psep.2019.01.031
    [15]
    汤宗情. 煤自燃过程中孔隙演化机制及其对多元气体吸附特性的影响[D]. 徐州: 中国矿业大学, 2020.

    TANG Zongqing. Pore evolution mechanism during coal spontaneous combustion and its influence on multi-component gas adsorption characteristics [D]. Xuzhou: China University of Mining and Technology, 2020.
    [16]
    白亚娥. 不同预氧化程度煤二次氧化特性研究[D]. 西安: 西安科技大学, 2017.

    BAI Ya’e. Study on the secondary oxidation characteristics of coal with different pre-oxidation degrees [D]. Xi'an: Xi'an University of Science and Technology, 2017.
    [17]
    姜 峰,尚芳兰,李珍宝,等. 热重–FTIR法分析不粘煤氧化特性参数[J]. 燃烧科学与技术,2021,27(1):35−42.

    JIANG Feng,SHANG Fanglan,LI Zhenbao,et al. Analysis of non-stick coal oxidation characteristics by thermogravimetric-FTIR method[J]. Combustion Science and Technology,2021,27(1):35−42.
    [18]
    许 芹. 氧化煤表面吸氧能力演化及分子活性结构二次氧化特性研究[D]. 徐州: 中国矿业大学, 2021.

    XU Qin. The evolution of oxygen absorption capacity on the surface of oxidized coal and the secondary oxidation characteristics of molecular active structures [D]. Xuzhou: China University of Mining and Technology, 2021.
    [19]
    冯 杰,李文英,谢克昌. 傅立叶红外光谱法对煤结构的研究[J]. 中国矿业大学学报,2002(5):25−29.

    FENG J,LI W Y,XIE K C. Study on coal structure by Fourier transform infrared spectroscopy[J]. Journal of China University of Mining and Technology,2002(5):25−29.
    [20]
    王 坤. 煤氧化产物产热及官能团变化特性研究[D]. 北京: 煤炭科学研究总院, 2016.

    WANG Kun. Study on heat generation and functional group change characteristics of coal oxidation products [D]. Beijing: General Coal Research Institute, 2016.
    [21]
    QI G S,WANG D M,ZHENG K M,et al. Kinetics characteristics of coal low-temperature oxidation in oxygen-depleted air[J]. Journal of Loss Prevention in the Process Industries,2015,35:224−231. doi: 10.1016/j.jlp.2015.05.011
  • Cited by

    Periodical cited type(18)

    1. 李延河,万志军,于振子,苟红,赵万里,周嘉乐,师鹏,甄正,张源. 基于PSO-SVR的掘进工作面风温预测. 煤炭科学技术. 2025(01): 183-191 . 本站查看
    2. 孙振翔,范春虎,周远康. 岩浆侵入区变质煤氧化动力学研究. 陕西煤炭. 2025(03): 57-61 .
    3. 王涛,孟帆,弋伟斋,田晓月,李睿康,苏彬,刘利涛,罗振敏. 碳酸钾改性干水-六氟丙烷抑制甲烷爆炸特性. 高压物理学报. 2025(04): 79-90 .
    4. 叶正亮,郭曦蔓,尚博,胡冕. 煤变质程度对微观结构与热解参数的影响及关联性分析. 中国安全科学学报. 2025(02): 57-65 .
    5. 陈竹,徐明伟,李昊斌,白亮,杨永亮,杨尚学,李雅阁. 水浸煤自然发火特性研究. 煤矿安全. 2025(05): 114-120 .
    6. 李振榕,田富超,王刚,谭波,秦玉金. 不同温度和吸附压力下含瓦斯煤自燃微观分形特征. 煤炭科学技术. 2025(05): 213-232 . 本站查看
    7. 侯玉亭,张英超,孙计全,时东文,刘会奇,张铎. 煤自然发火气体指标及其有机官能团响应特征研究. 中国煤炭. 2024(01): 67-74 .
    8. 叶正亮,龚选平,胡冕,尚博. 煤自燃气体产物与微观基团关联性分析. 煤炭技术. 2024(05): 246-250 .
    9. 王涛,董哲,盛禹淮,南凡,杨哲,杨鹏,孟帆,罗振敏. 卤代烷气体灭火剂促进-抑制瓦斯燃爆特性试验. 煤炭科学技术. 2024(04): 265-274 . 本站查看
    10. 田富超,贾东旭,陈明义,梁运涛,朱红青,张同浩. 采空区复合灾害环境下含瓦斯煤自燃特征研究进展. 煤炭学报. 2024(06): 2711-2727 .
    11. 孟祥宁,梁运涛,郭宝龙,孙勇,田富超. 卤盐阻化剂对煤自燃阻化作用的定量识别及机理. 煤炭科学技术. 2024(06): 132-141 . 本站查看
    12. 杨鹏. 粒度对煤自燃热动力学特征和极限参数的影响研究. 煤矿安全. 2024(11): 120-129 .
    13. 于志金,晋策,汤旭,张志鹏,文虎. 岩浆侵入与接触距离对煤低温氧化过程热效应的影响. 煤炭学报. 2024(12): 4873-4882 .
    14. 于志金,徐勇,谷雨,张志鹏. 30℃下煤对不同比例CO_2-N_2混合气体吸附量差异性研究. 中国安全生产科学技术. 2023(05): 80-85 .
    15. 田沛. 煤矿沿空留巷工作面回采期间防灭火技术探析. 山西化工. 2023(06): 154-155+158 .
    16. 张岩峰. 煤自燃热特性TG-DSC实验研究. 能源与节能. 2023(09): 52-54 .
    17. 张同浩,陈明义,田富超,刘惠族,张浩,王硕. 褐煤中CH_4/O_2/N_2气体竞争吸附特性的分子模拟研究. 矿业科学学报. 2023(06): 817-827 .
    18. 王飞,景长宝,于波,刘红亮,张宝第,王振平. 不同瓦斯浓度条件下弱黏煤低温氧化动力学参数研究. 煤矿安全. 2023(12): 64-72 .

    Other cited types(5)

Catalog

    Article views (119) PDF downloads (112) Cited by(23)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return